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This article gives a procedure to convert a frame which is not a tight frame into a Parseval
frame for the same space, with the requirement that each element in the resulting Parseval
frame can be explicitly written as a linear combination of the elements in the original frame.
Several examples are considered, such as a Fourier frame on a spiral. The procedure can be
applied to the construction of Parseval frames for L2(B(0, R)), the space of square integrable
functions whose domain is the ball of radius R. When a finite number of measurements are
used to reconstruct a signal in L2(B(0, R)), error estimates arising from such approximation
are discussed.
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1. Introduction

Earlier work by Benedetto et al. [1–4] gave the construction of a set of points on a
given spiral such that these points give rise to a frame for L2(B(0, R)), the space
of all square integrable functions on the ball centered at the origin and of radius
R. This means that given a spiral Ac, the authors in [1–4] were able to construct
a sequence of points ⇤ on this spiral and its interleaves such that every signal f
belonging to L

2(B(0, R)) can be written as
P

�2⇤ a�(f)e� where e�(x) = e

2⇡ix·�
.

The incentive of choosing points on a spiral comes from the applicability in
MRI (Magnetic Resonance Imaging) where a signal is sampled in the Fourier
domain along interleaving spirals, resulting in fast imaging methods. For practical
purposes, the reconstruction of signals using such infinite frames entails inverting
the frame operator and/or using only finitely many samples. Such numerical
issues are mitigated if one can use a tight frame. The possibility of expanding a
function as a non-harmonic Fourier series was discovered by Paley and Wiener [5].
For a sequence ⇤ of real numbers, it is natural to ask whether every band-limited
signal with spectrum E can be reconstructed in a stable way from its samples
{F (�),� ✓ ⇤}. Landau [6] proved a necessary condition for {e2⇡ix·�,� 2 ⇤} to be
a frame for the space of band-limited functions with spectrum E by relating the
lower density of ⇤ to the measure of E. There is an extensive literature on the
stable reconstruction problem, both on theoretical foundation (see, e.g., [7], [8],
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[9], [10], [11]) and on explicit construction (see [12], [13], [14], [15], [16], [17], [18]).
The problem of non-uniform sampling has been addressed by these authors. The
present article follows this venerable tradition and at the same time addresses a
di↵erent issue: how to convert a frame into a tight frame without having to invert
the frame operator.

In a series of papers by Aldroubi, Feichtinger, and Gröchenig [12–14], a very
general theory of irregular sampling has been developed, based on the fact that
every band-limited function f satisfies a reproducing formula f ⇤ g = f , for a
suitable function g, where ⇤ denotes convolution. This paper seeks a di↵erent
approach: how to reconstruct a function by first converting a frame into a tight
frame, and then using the same samples from the original frame elements to build
the reconstruction formula. This is further explained below.

One of the main contributions of this article is to give a procedure to convert a
frame which is not a tight frame into a Parseval frame for the same space, with
the requirement that each element in the resulting Parseval frame can be explicitly
written as a linear combination of the elements in the original frame. To be precise,
this requirement means that if {f1, f2, f3} is the original frame for the Hilbert space
H, and {g1, g2, g3} is the resulting Parseval frame, then each gn can be explicitly
written as a linear combination of f1, f2, f3. For any function f 2 H, one has f =P3

n=1hf, gnign. Since each gn is a linear combination of f1, f2, and f3, each number
hf, gni can be calculated from the three numbers hf, f1i, hf, f2i, hf, f3i. Hence, from
the numbers hf, fni for n = 1, 2, 3, one can recover f . In the reconstruction formula
using the Parseval frame, only the measurements obtained from the original frame
are needed. This feature is extremely important, especially in the aforementioned
application to MRI, when the measurements from the original frame are the only
available measurements. The procedure explained in this article applies to other
frames, and not just to Fourier frames, but motivated by applications to medical
imaging as in MRI, the focus here is only on spiral sampling with Fourier frames.
In [19], Frank, Paulsen, and Tiballi obtain a Parseval frame from a given frame

that spans the same subspace as the original frame and is closest to it in some
sense, which they call symmetric approximation. The approach in [19] is to use
the polar decomposition of the synthesis operator of the original frame. This idea
inspires the method developed in the present work to obtain Parseval frames for
the spiral sampling case.
In practice, one cannot use an infinite frame as obtained in [1–4] and only a

finite number of samples or measurements have to be used in order to reconstruct
a signal. This means that one has to study features of a signal from a finite sum
approximation of the original. It is desirable that the error introduced by such
an approximation is minimized. Such approximation error is also studied in the
present work.
The paper is divided as follows. After setting the notation and introducing some

background work in the rest of Section 1, Section 2 provides an algorithm for
constructing a Parseval frame from a given finite frame such that the resulting
Parseval frame vectors are linear combinations of the frame vectors of the given
frame. Several explicit examples are also discussed. It is also shown in Section
2, see Proposition 2.6, that by considering frames of subspaces of the underlying
Hilbert space H, di↵erent Parseval frames can be obtained from a given frame. A
comparison of these di↵erent Parseval frames is also done in Section 2. In Section
3, reconstruction of signals in infinite dimensional spaces is studied by considering
finite sums and estimates of the resulting approximation error are given. In Section
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4, it is shown that in the infinite dimensional setting it is not always possible to
find an orthogonal set of vectors that is the symmetric approximation of a given
set of vectors. Finally, some concluding remarks are given in Section 5.

1.1. Notation and preliminaries

Let Rd be the d-dimensional Euclidean space, and let bRd denote Rd when it is
considered as the domain of the Fourier transforms of signals defined on Rd

. L

2(bRd)
is the space of square integrable functions � on bRd

, i.e.,

||�||L2(bRd) =

✓Z

bRd

|�(�)|2d�
◆1/2

< 1,

�

_ is the inverse Fourier transform of � defined as

�

_(x) =

Z

bRd

�(�)e2⇡ix·�d�,

and supp �

_ denotes the support of �_
. Let E ✓ bRd be closed. The Paley-Wiener

space PWE is

PWE = {� 2 L

2(bRd) : supp �

_ ✓ E}.

The Fourier transform of a function f is denoted by b
f. Let H be a separable

Hilbert space. A sequence {fn : n 2 Zd} ✓ H is a frame for H if there exist
constants 0 < A  B < 1 such that

8y 2 H, A||y||2 
X

n

|hy, fni|2  B||y||2.

The constants A and B are called the lower and upper frame bounds, respectively.
If A = B, the frame is said to be tight and if A = B = 1, the frame is called a
Parseval frame. Let {fn} be a frame for H. The synthesis operator is the linear
mapping T : `2 ! H given by T ({ci}) =

P
k ckfk. The frame operator S : H ! H

is TT ⇤ and is given by

8y 2 H, S(y) =
X

n

hy, fnifn.

For every y 2 H,

y =
X

n

hy, S�1
fnifn =

X

n

hy, fniS�1
fn. (1)

For more on frames, see [20] or [21].
Let ⇤ ✓ bRd be a sequence and let E ⇢ Rd have finite Lebesgue measure. By the

Parseval Formula, the following are equivalent ([3, 4]).

(i) {e� : � 2 ⇤} is a frame for L2(E).
(ii) There exist 0 < A 6 B < 1 such that

A||�||22 6
X

�2⇤
|�(�)|2 6 B||�||22,
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for all � in PWE . In this case, we say that {e� : � 2 ⇤} is a Fourier frame for
PWE .

A set ⇤ is uniformly discrete if there exists r > 0 such that

8�, � 2 ⇤, |�� �| � r,

where |�� �| is the Euclidean distance between � and �.

If for two frames {fi}i2N and {gi}i2N of two Hilbert subspaces K and L of H,

respectively, there exists an invertible bounded linear operator T : K ! L such that
T (fi) = gi for every index i, then these two frames are said to be weakly similar
[19]. A Parseval frame {⌫i}ni=1 in a finite dimensional Hilbert subspace L ✓ H is
said to be a symmetric approximation of a finite frame {fi}ni=1 in a Hilbert subspace
K ✓ H if the frames {fi}ni=1 and {⌫i}ni=1 are weakly similar and the inequality

nX

j=1

kµj � fjk2 �
nX

j=1

k⌫j � fjk2

is valid for all Parseval frames {µi}ni=1 in Hilbert subspaces of H that are weakly
similar to {fi}ni=1 [19]. If K = L, the frames are called similar.
When an n by m matrix W acts on a sequence of elements {f1, f2, . . . , fm}, this

action is denoted by {e1, e2, . . . , en} = W · {f1, f2, . . . , fm}, or in matrix notation,

2

6664

e1

e2
...
en

3

7775
=

2

6664

w11 w12 · · · w1m

w21 w22 · · · w2m
...

...
...

...
wn1 wn2 · · · wnm

3

7775

2

6664

f1

f2
...
fm

3

7775
,

to denote, for a fixed i,

ei =
mX

j=1

wijfj .

The space C

(k) consists of all functions which have derivatives of order up to k,

k > 2. For some positive integer k, f (k) denotes the kth derivative of f. The open
ball of radius R is denoted by B(0, R). For a given set E, the complement of E is
denoted by E

c
.

1.2. Background

The following theorem [1–4] is based on a deep result of Beurling [22].

Theorem 1.1 Beurling Covering Theorem: Let ⇤ ✓ bRd be uniformly discrete, and
define ⇢ = supµ2bRd dist(µ,⇤) where dist(µ,⇤) is the Euclidean distance between the

point µ and the set ⇤. If R⇢ < 1/4, then {e2⇡ix·� : � 2 ⇤} is a Fourier frame for
PW

B(0,R).

In [1–4] the authors have used the Beurling Covering Theorem to give an explicit
construction of Fourier frames from points that lie on a spiral. In particular, the
following result can be found in [2].



November 16, 2013 11:33 Applicable Analysis AA˙Sampling

Tight frames, partial isometries, and signal reconstruction 5

Example 1.2 Fix c > 0. In bR2
, consider the spiral

Ac = {c✓ cos 2⇡✓, c✓ sin 2⇡✓ : ✓ � 0}.

For R and � satisfying Rc < 1/2 and ( c2 + �)R < 1/4, one chooses a uniformly
discrete set of points ⇤ such that the curve distance between any two consecutive
points is less than 2�, and beginning within 2� of the origin. Then ⇤ satisfies the
Beurling Covering Theorem and hence {e2⇡ix·� : � 2 ⇤} is a Fourier frame for
PW

B(0,R).

The synthesis operator T defined earlier is bounded and has a natural polar
decomposition T = W |T |, where W is a partial isometry from `2 into H. To obtain
a symmetric approximation of a given frame, the following has been shown in [19].

Theorem 1.3 : Let {µi}ni=1 be a Parseval frame in a Hilbert subspace L ✓ H
and let {fi}ni=1 be a frame in a Hilbert subspace K ✓ H such that both these frames
are weakly similar. Letting the standard orthonormal basis for Cn be denoted by
{ei}ni=1, the following inequality

nX

j=1

kµj � fjk2 �
nX

j=1

kW (ej)� fjk2

holds. Equality appears if and only if µj = W (ej) for j = 1, . . . , n. (Consequently,
the symmetric approximation of a frame {fi}ni=1 in a finite dimensional Hilbert
space K ✓ H is a Parseval frame spanning the same Hilbert subspace L ⌘ K of H
and being similar to {fi}ni=1.)

The operator W in Theorem 1.3 is a partial isometry coming from the polar
decomposition of the synthesis operator. A related result, which is a corollary of
Naimark’s Theorem, can be found in [23] and is stated below in Theorem 1.4. The
proof is straightforward and is included here.

Theorem 1.4 : Let H be an n-dimensional Hilbert space and K ◆ H be such
that the dimension of K is m. Let {e1, . . . , em} be an orthonormal basis for K. Let
W be a partial isometry W : K ! H. Then {Wei}mi=1 is a Parseval frame for H.

Proof : Let f 2 H and let g 2 K such that W ⇤
f = g.

kfk2 = hf, fi = hWW

⇤
f, fi (since W is a partial isometry)

= hW ⇤
f,W

⇤
fi

= hg, gi = kgk2 =
mX

i=1

|hg, eii|2

=
mX

i=1

|hW ⇤
f, eii|2 =

mX

i=1

|hf,Weii|2.

⇤

2. Parseval frames from a finite Fourier frame on a spiral

In this section an explicit construction is given for creating a Parseval frame that
is the symmetric approximation of a given frame for a finite dimensional Hilbert
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space H. As mentioned in Section 1, it is required that each element in the resulting
Parseval frame can be expressed as a linear combination of the original frame.
Several examples are discussed for the purpose of illustration. When dealing with
finite dimensional Hilbert spaces, the synthesis operator and the associated partial
isometry can be thought of as matrices. One should note that the entries in these
matrices depend on the choice of the orthonormal basis (ONB) of the Hilbert space.
For example, the columns of the matrix of the synthesis operator are the coe�cients
of the frame vectors with respect to the chosen ONB. However, the Parseval frame
that is the symmetric approximation of the given frame is independent of the choice
of the ONB. This seems natural and we state this as a lemma below and provide
its proof.

Lemma 2.1: Let H be a Hilbert space of dimension n and let X = {f1, . . . , fm}
be a frame for H. Let {u1, . . . , un} and {v1, . . . , vn} be two orthonormal bases for
H. Let the synthesis operator of X with respect of these two orthonormal bases be
T1 and T2, respectively. Then the polar decomposition of T1 and T2 gives the same
Parseval frame.

Proof : Since {u1, . . . , un} and {v1, . . . , vn} are two orthonormal bases for the
same Hilbert space H, there exists an unitary matrix Q such that

2

64
u1
...
un

3

75 = Q

2

64
v1
...
vn

3

75 .

Also, there exist m⇥ n matrices M1 and M2 such that

2

64
f1
...
fm

3

75 = M1

2

64
u1
...
un

3

75

and

2

64
f1
...
fm

3

75 = M2

2

64
v1
...
vn

3

75 .

Note that the synthesis operators T1 and T2 are given by

T1 = M

T
1

and

T2 = M

T
2 .

The polar decomposition of T1 and T2 gives partial isometries W1 and W2, respec-

tively. It has to be shown that W T
1

2

64
u1
...
un

3

75 = W

T
2

2

64
v1
...
vn

3

75 . In other words, it has to

be shown that

W

T
1 Q = W

T
2
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or,

Q

T
W1 = W2.

Note that M1Q = M2, i.e.,

T2 = Q

T
T1. (2)

Also,

T2 = W2|T2| (3)

Equating the right sides of (2) and (3) gives

W2|T2| = Q

T
T1 = Q

T
W1|T1|

= Q

T
W1|(QT )⇤T2|

= Q

T
W1|T2|

where the last equality follows from the fact that since Q

T is unitary |(QT )⇤T2| =
|T2|. Finally, the uniqueness of the polar decomposition gives W2 = Q

T
W1 as

needed. ⇤

The following algorithm gives a way to construct a Parseval frame from a given
frame that is the symmetric approximation of the given frame in the sense of
Theorem 1.3.

2.0.0.1. Algorithm for constructing a Parseval frame from a given frame:.

(1) Input: A frame X = {f1, . . . , fm} for an n-dimensional Hilbert space H.

Output: A Parseval frame for H.

(2) Since X is a spanning set for H, X contains a basis B for H. Apply the
Gram-Schmidt process to B and obtain an ONB {e1, . . . , en} for H.

(3) Writing each fi in terms of the ONB, (2) gives the m by n transformation
matrix M such that

2

64
f1
...
fm

3

75 = M

2

64
e1
...
en

3

75

Note that the synthesis operator of the frame X is T = M

T
.

(4) Take the polar decomposition of T. This is T = W |T |, where W is a partial
isometry.

(5) The Parseval frame G = {g1, . . . , gm} that spans the Hilbert space H is
given by W

T
.{e1, . . . , en}, i.e.,

2

64
g1
...
gm

3

75 = W

T

2

64
e1
...
en

3

75

Due to the Gram-Schmidt process, each ek in the ONB can be written as a linear
combination of some of the fis in the frame X and so each element in the Parseval
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frame G is in fact a linear combination of elements from the original frame X. A
signal f 2 H is reconstructed using the Parseval frame G by evaluating

f =
mX

i=1

hf, giigi.

The coe�cients {hf, gii}mi=1 do not have to computed separately and can be ob-
tained from the already acquired coe�cients {hf, fii}mi=1.

Next, several examples are discussed. In Example 2.2 and Example 2.3 given
below, the frame under consideration is on bR. Example 2.4 is for a Fourier frame
on a spiral in bR2

. In Example 2.2 and 2.3, the procedure suggested by Theorem 1.3
is modified so that in the final step, matrix multiplication is replaced by a matrix
acting on a sequence of elements in a Hilbert space.

Example 2.2

Let {f1 = e

2⇡i�1x
, f2 = e

2⇡i�2x
, f3 = e

2⇡i�3x} be a frame that spans a subspace of
L

2([�1/2, 1/2]). Choose �1 = 3 + 1
3 ,�2 = 4 + 1

4 ,�3 = 5 + 1
5 .

This frame is used to construct a Parseval frame that spans the same subspace.
Let H be the span of {f1, f2, f3} and let {e1, e2, e3} be an orthonormal basis of H.
One can construct an orthonormal basis {e1, e2, e3} by applying the Gram-Schmidt
orthogonalization process to {f1, f2, f3}. The resulting orthonormal basis can be
written as

2

4
e1

e2

e3

3

5 =

2

4
1 0 0

�c21 1 0
c21✓ � c31 �✓ 1

3

5

2

4
f1

f2

f3

3

5
,

where

c21 = sinc(�2 � �1), c32 = sinc(�3 � �2), c31 = sinc(�3 � �1),

and

sinc(x) ⌘ sin(⇡x)

⇡x

, ✓ =
c32 � c21c31

1� c

2
21

.

Then

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + ✓e2 + e3,

and the synthesis operator T of the frame {f1, f2, f3} can be written in matrix
form as

2

4
1 c21 c31

0 1 ✓

0 0 1

3

5
.

Next the polar decomposition of the matrix of T is computed, so that T = W |T |,
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whereW is a partial isometry and |T | = (T ⇤
T )1/2. In this case, since T is invertible,

W is in fact a unitary matrix. Finally, let {g1, g2, g3} = W

⇤ · {e1, e2, e3}. Then
{g1, g2, g3} is a Parseval frame for H.

Remark: (1). In this example, since the original frame is linearly independent
and therefore a basis for H, what is obtained as a Parseval frame is in fact an
orthonormal basis for H.

(2). Since each gn can be written as a linear combination of f1, f2, and f3, the
Parseval frame constructed indeed spans the same subspace as the original frame.

Example 2.3 Let �1 = 3 + 1
3 ,�2 = 4 + 1

4 ,�3 = 5 + 1
5 and let f1 = e

2⇡i�1x
, f2 =

e

2⇡i�2x
, f3 = e

2⇡i�3x
, f4 = f1 + f2, f5 = f1 + f3, and f6 = f2 + f3. Consider the

frame {f1, f2, f3, f4, f5, f6} for a subspace of L2([�1/2, 1/2]). Denote this subspace
by H. Starting from the linearly independent set {f1, f2, f3} that spans H, one can
construct an orthonormal basis {e1, e2, e3} for H as done in Example 2.2. From
Example 2.2,

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + ✓e2 + e3,

f4 = f1 + f2 = (1 + c21)e1 + e2,

f5 = f1 + f3 = (1 + c31)e1 + ✓e2 + e3,

f6 = f2 + f3 = (c21 + c31)e1 + (1 + ✓)e2 + e3,

where c21, c31, and ✓ are as defined in Example 2.2. The synthesis operator T has
the matrix representation

2

4
1 c21 c31 1 + c21 1 + c31 c21 + c31

0 1 ✓ 1 ✓ 1 + ✓

0 0 1 0 1 1

3

5
.

Let the polar decomposition of T be given by T = W |T |. Let {g1, g2, g3, g4, g5, g6} =
W

⇤ · {e1, e2, e3}. Note that W

⇤ is a 6 by 3 matrix. Then it can be shown that
{gk : 1  k  6} forms a Parseval frame for H.

Example 2.4 A Fourier frame of three elements is first constructed using Example
1.2. In order to satisfy the conditions of Example 1.2, let c = 1, R = 1/4, and
� = 1/4. Three points are then picked on the spiral Ac=1 = {✓ cos 2⇡✓, ✓ sin 2⇡✓}
that have arc-length between them less than 2� and starting within 2� from the
origin. The x and y coordinates of any point on the spiral are given by

x = ✓ cos 2⇡✓,

y = ✓ sin 2⇡✓

and therefore the arc-length between any two points (x1, y1) and (x2, y2) with
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angles ✓1 and ✓2, respectively, is

Z (x2,y2)

(x1,y1)
ds =

Z ✓2

✓1

s✓
dx

d✓

◆2

+

✓
dy

d✓

◆2

d✓

=

Z ✓2

✓1

(1 + 4⇡2
✓

2)d✓

= (✓2 � ✓1) +
4

3
⇡

2(✓32 � ✓

3
1).

Therefore, taking the origin to have ✓ = 0, one has to pick ✓1, ✓2, and ✓3 such that

1) ✓1 +
4

3
⇡

2
✓

3
1 <

1

2
,

2) (✓2 � ✓1) +
4

3
⇡

2(✓32 � ✓

3
1) <

1

2
,

3) (✓3 � ✓2) +
4

3
⇡

2(✓33 � ✓

3
2) <

1

2
.

The inequalities 1), 2), and 3) can be satisfied by taking ✓1 = 1/16, ✓2 = 1/8, and
✓3 = 1/4. This choice gives the following three points on the spiral:

�1 = (
1

16
cos

⇡

8
,

1

16
sin

⇡

8
) = (0.06, 0.02),

�2 = (
1

8
cos

⇡

4
,

1

8
sin

⇡

4
) = (0.09, 0.09),

and

�3 = (
1

4
cos

⇡

2
,

1

4
sin

⇡

2
) = (0, 1/4).

Thus X = {e�1
, e�2

, e�3
} is a Fourier frame for span{e�1

, e�2
, e�3

}.
For the purpose of implementation, to obtain the symmetric approximation, one

can discretize the ball B(0, 1/4) by changing into polar coordinates and look at
the rectangle {(r, ✓) : 0  r  1/4, 0  ✓  2⇡}. Each side of the rectangle is then
divided into N subintervals, partitioning it into N

2 rectangles. The exponential
functions from the set X are then evaluated at N

2 grid-points, taking one point
from each small rectangle and thus obtaining a vector vi of length N

2 for each
e�i

, i = 1, 2, 3. Treating the synthesis operator F of X as the matrix [F ] whose
columns are vi; such a matrix will be of size N

2 by 3. After computing the polar
decomposition of [F ] using Matlab, the resulting discretized Parseval frame {ui}3i=1
is considered as the symmetric approximation of the above Fourier frame.
Suppose one is interested in reconstructing a function f in span{e�1

, e�2
, e�3

}.
First f is converted into a vector [f ] of size N

2 by evaluating it at the N

2 points
on the rectangular grid above. Then f is reconstructed at the N

2 points as

˜[f ] =
3X

j=1

h[f ], uiiui.
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Using N = 500 and f = e�1
the supremum norm of the error k[f ]� [f̃ ]k is .1674.

For f = e�1
� 2e�2

+ e�3
the supremum norm of the error is .1841 again with

N = 500.

Example 2.5 Let �1 = 3 + 1
3 ,�2 = 4 + 1

4 ,�3 = 5 + 1
5 ,�4 = 6 + 1

6 and
let f1 = e

2⇡i�1x
, f2 = e

2⇡i�2x
, f3 = e

2⇡i�3x
, f4 = e

2⇡i�4x
. Consider the frame

{f1, f2, f3, f4} for a subspace of L2([�1/2, 1/2]). Denote this subspace by H. Start-
ing from the linearly independent set {f1, f2, f3, f4} that spansH, one can construct
an orthonormal basis {e1, e2, e3, e4} for H as done in Example 2.2. The resulting
orthonormal basis can be written as

2

664

e1

e2

e3

e4

3

775 =

2

664

1 0 0 0
�c21 1 0 0

c21✓ � c31 �✓ 1 0
�c41 + �c31 + (� � ✓�)c21 �� + ✓� �� 1

3

775

2

664

f1

f2

f3

f4

3

775 ,

where

cij = sinc(�i � �j), 1  i, j  4,

and

sinc(x) ⌘ sin(⇡x)

⇡x

, ✓ =
c32 � c21c31

1� c

2
21

, � =
c42 � c21c41

1� c

2
21

, � =
�c43 + ✓c42 � (c21✓ � c31)c41
1� 2✓c32 + ✓

2 � (c31 � c21✓)2
.

If the matrix above is denoted by M then the synthesis operator of the frame
{f1, f2, f3, f4} is T = (M�1)⇤. The polar decomposition of T gives rise to a Parseval
frame {g1, g2, g3, g4} which in this case is an orthonormal basis for H.

Now consider H1 = span{f1, f2} and H2 = span{f3, f4}. Using the Gram-
Schmidt process, an orthonormal basis {e1, e2} can be obtained for H1 as


e1

e2

�
= M1


f1

f2

�
,

where

M1 =


1 0

�c21 1

�
.

Similarly, an orthonormal basis for H2 is {u1, u2} that is given by


u1

u2

�
= M2


f3

f4

�
,

where

M2 =


1 0

�c43 1

�
.

Note that {e1, e2, u1, u2} forms a basis for H but is not an ONB. The synthesis
operator of the frame {f1, f2} is T1 = (M�1

1 )⇤ whereas the synthesis operator of
the frame {f3, f4} is T2 = (M�1

2 )⇤. Taking the polar decomposition of T1 and T2

gives Parseval frames for H1 and H2, respectively, and these can be denoted by
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{x1, x2} and {y1, y2}, respectively. Then it can be checked that {x1, x2, y1, y2} is a
Parseval frame for H. In fact, if W1 and W2 are the partial isometries coming from
the polar decompositions of T1 and T2 respectively, then the matrices of both W1

and W2 are of size 2 by 2 and the synthesis operator of the frame {x1, x2, y1, y2} is
given by

P =


W1 0

0 W2

�

where 0 is the 2 by 2 zero matrix. Since W1 and W2 are partial isometries, one gets

PP

⇤ =


W1 0

0 W2

� 
W

⇤
1 0

0 W

⇤
2

�
=


W1W

⇤
1 0

0 W2W
⇤
2

�
=


I 0

0 I

�
.

However, the Parseval frame {x1, x2, y1, y2} is di↵erent from the Parseval frame
{g1, g2, g3, g4}.
Example 2.5 leads to the following proposition.

Proposition 2.6: Let X = {f1, f2, . . . , fm} be a frame for an n-dimensional

Hilbert space H. Consider K subframes Xk = {fj1 , . . . , fjmk
} such that

PK
k=1mk =

m and
T

k Xk = �. Suppose that the subframe Xk is a frame for a Hilbert subspace

Hk ✓ H. Let each subspace Hk have dimension nk so that
PK

k=1 nk = n. Using
Theorem 1.3, one can get a Parseval frame X

Par for H from the frame X and also
a Parseval frame X

Par
k for the each subspace Hk, from the corresponding frame Xk.

Then
S

k X
Par
k is also a Parseval frame for H, however, this could be di↵erent from

X

Par
. The two Parseval frames will coincide if

LHk = H and for each k, Hk is
in the orthogonal complement of each Hj , j 6= k.

Proof : (i) The subframe Xk = {fj1 , . . . , fjmk
} contains a basis Bk =

{fi1 , . . . , fink
} of Hk that gives an orthonormal basis through the Gram-Schmidt

process. This can be denoted by {ei1 , . . . , eink
}.

2

64
fj1
...

fjmk

3

75 = Mk

2

64
ei1
...

eink

3

75 .

The transformation matrix, Mk, is an mk ⇥ nk matrix. Note that the rows of the
matrix Mk are the coe�cients of the subframe elements in Xk in terms of the
orthonormal basis {ei1 , . . . , eink

}. Thus, the synthesis operator of the sub-frame is

M

T
k . The polar decomposition of MT

k gives rise to a Parseval frame for the subspace
Hk ✓ H. Let Wk be the partial isometry associated with the polar decomposition
of MT

k . The matrix of Wk is of size mk ⇥ nk and its columns are the coe�cients
of the Parseval frame XPar

k with respect to the ONB {ei1 , . . . , eink
}. Therefore, the

synthesis operator of the frame
SK

k=1X
Par
k is

W =

2

6664

W1 0 · · · 0

0 W2 · · · 0

...
...

. . .
...

0 0 · · · WK

3

7775
(4)
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and

WW

⇤ =

2

6664

W1W
⇤
1 0 · · · 0

0 W2W
⇤
2 · · · 0

...
...

. . .
...

0 0 · · · WKW

⇤
K

3

7775
=

2

6664

I 0 · · · 0
0 I · · · 0
...
...
. . .

...
0 0 · · · I

3

7775
= I.

This shows that
SK

k=1X
Par
k is a Parseval frame. The fact that this need not be the

same as XPar can be seen in Example 2.5.
(ii) Assuming that

LHk = H and for each k,Hk is in the orthogonal complement
of each Hj , j 6= k, it has to be shown that the two Parseval frames,

SK
k=1X

Par
k and

X

Par
, are the same. Under this assumption, E =

SK
k=1{ej1 , ej2 , . . . , ejnk

}, the union
of orthonormal basis of each HK , is an orthonormal basis of H. Keeping the same
notation as in (i), the synthesis operator of the frame

SK
k=1Xk = X, by considering

the coe�cients with respect to the ONB E, is

M =

2

6664

M

T
1 0 · · · 0

0 M

T
2 · · · 0

...
...

. . .
...

0 0 · · · MT
K

3

7775
,

where 0 stands for the zero matrix. Due to Lemma 2.1, the polar decomposition of
M will give rise to the Parseval frame X

Par
. However, in the polar decomposition

of M = W |M |, W is as given in (4). As observed in (i), the columns of W form
the Parseval frame

SK
k=1X

Par
k . This shows that in this case X

Par =
SK

k=1X
Par
k .

⇤

One might want to compare the two Parseval frames referred to in Proposition
2.6. Due to Theorem 1.3, the Parseval frame XPar is the symmetric approximation
of the frame X in H. Since the symmetric approximation of a given frame is
unique, the Parseval frame

S
k X

Par
, when di↵erent from X

Par
, is not a symmetric

approximation of X. However, getting
S

k X
Par requires fewer computations than

obtaining X

Par
. This can be seen as follows.

The polar decomposition can be computed using the singular value decomposi-
tion (SVD). Recall that if A is any m by n matrix, then the SVD of A is given
by A = U⌃V ⇤, where U and V are unitary matrices, U is m by m,V is n by n,
and ⌃ is a matrix whose only non-zero elements are along the (i, i) entries, where
1  i  m, assuming that m  n. To compute ⌃ and V , the number of flops
(floating point operations) required is 4mn

2+8n3. Therefore if the matrix A (with
n columns) is split into two matrices (each with n/2 columns), and the computa-
tion is performed on each of the two sub-matrices, the number of flops is reduced
to 2mn

2 + n

3. For a discussion on the computation complexity for computing the
SVD, see Golub and van Loan [24].

3. Approximation

If the Hilbert space is infinite dimensional as in L

2(B(0, R)), then a frame for
such a space can be constructed by following Example 1.2. As already mentioned,
the type of frames discussed in Example 1.2 is of interest due to applications in
medical imaging. However, for implementation purposes, one can only use finitely
many terms from the infinite sum in the reconstruction formula (1). Without loss



November 16, 2013 11:33 Applicable Analysis AA˙Sampling

14 Enrico Au-Yeung and Somantika Datta

of generality, in what follows, the index set is taken to be N even though the
calculations would hold for any countable set. Let ⇤ = {�n}1n=1 be a sequence
such that {e�n

}1n=1 is a frame for L

2(B(0, R)) where e�n
(x) = e

2⇡i�n·x i.e., any

f 2 L

2(B(0, R)) can be written as f =
1X

n=1

hf, e�n
iS�1

e�n
, where S is the frame

operator. This can be written as

f =

eNX

n=1

hf, e�n
iS�1

e�n
+

1X

n= eN+1

hf, e�n
iS�1

e�n

= e
f + f✏.

Note that e
f =

P eN
n=1hf, e�n

iS�1
e�n

belongs to the space H1 =

span{S�1
e�1

, . . . , S

�1
e� eN

} = span{e�1
, . . . , e� eN

}. The function e
f can be consid-

ered as an approximation of f. Using the technique described in Section 2, one can
get a Parseval frame {g1, . . . , g eN} for the subspace H1 and ef can be written as

e
f =

eNX

i=1

hf, giigi

where the coe�cients {hf, gii} eN
i=1 can be obtained from linear combinations of the

elements in {hf, e�i
i} eN

i=1. The error in this approximation is given by f✏ = f � e
f.

This section gives various estimates of such approximation error by considering
di↵erent spaces of functions.

3.1. Functions in C(k)

3.1.1. Approximation error in one dimension

Let ⇤ = {�n}1n=1 be a sequence of reals such that {e�n
}1n=1 is a frame for

L

2(�R,R). Suppose that only Ñ terms are used to reconstruct f . Let f̃ =
ÑX

n=1

hf, e�n
iS�1

e�n
. An estimate of the error incorporated in truncating the sum is

given in the following.

Lemma 3.1: Given f 2 C

(k)\L2(�R,R). Assume that f and f

(m)
, m = 1, . . . , k

vanish at ±R. Then for a given � 2 bR,

| bf(�)| 6 1

(2⇡|�|)k kf
(k)kL1(�R,R). (5)

Proof : Using integration by parts k times and the fact that f and f

(m)
, m =
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1, . . . , k � 1, vanish at ±R we have

b
f(�) =

Z R

�R
f(t)e�2⇡i�t

dt

=
1

2⇡i�

Z R

�R
f

0(t)e�2⇡i�t
dt

=
...

=
1

(2⇡i�)k

Z R

�R
f

(k)(t)e�2⇡i�t
dt.

Therefore,

| bf(�)| 6 1

(2⇡|�|)k
Z R

�R
|f (k)(t)|dt

=
1

(2⇡|�|)k kf
(k)kL1(�R,R).

⇤

Theorem 3.2 : Let f 2 C

(k) \ L

2(�R,R) and ⇤ = {�n}1n=1 be a sequence of
reals such that {e�n

}1n=1 is a frame for L

2(�R,R) where e�n
(x) = e

2⇡i�nx
. Then

kf � f̃kL2(�R,R) 6
p
2R
A

kf (k)kL1(�R,R)

(2⇡)k
1
P , where A is a lower frame bound and P is a

constant that depends on k and the number of terms Ñ used to obtain f̃ .

Proof :

kf � f̃kL2(�R,R) =

������

1X

n=1

hf, e�n
iS�1

e�n
�

ÑX

n=1

hf, e�n
iS�1

e�n

������
L2(�R,R)

=

������

X

n>Ñ

hf, e�n
iS�1

e�n

������
L2(�R,R)

=

������

X

n>Ñ

b
f(�n)S

�1
e�n

������
L2(�R,R)

6
X

n>Ñ

| bf(�n)|kS�1kke�n
kL2(�R,R)

6 1

A

X

n>Ñ

| bf(�n)|ke�n
kL2(�R,R)

=

p
2R

A

X

n>Ñ

| bf(�n)|.
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Using Lemma 3.1 to bound | bf(�n)| one gets

kf � f̃kL2(�R,R) 6
p
2R

A

X

n>Ñ

| bf(�n)| 6
p
2R

A

kf (k)kL1(�R,R)

(2⇡)k
2

Z 1

Ñ+1

1

x

k
dx

=

p
2R

A

kf (k)kL1(�R,R)

(2⇡)k
2

(k � 1)(Ñ + 1)(k�1)
. (6)

Given ✏ one can choose Ñ such that
p
2R
A

kf (k)kL1(�R,R)

(2⇡)k
2

(k�1)(Ñ+1)(k�1)
< ✏. ⇤

Example 3.3 Let �n = n. The system of exponentials {en}n2Z is an orthonormal
basis for the Hilbert space L

2[0, 1]. So it is a tight frame with frame bound A = 1.
Suppose f 2 L

2[0, 1] and k = 2 i.e., f is at least twice di↵erentiable, then,

kf � f̃kL2[0,1] 6
kf (2)kL1[0,1]

(2⇡)2
2

Ñ + 1
. (7)

(7) is comparable to the result obtained in [20] (page 71) which says that if the
derivative f

0 2 L

2(0, 1), then for all N 2 N,

������
f(x)�

X

|n|<N

hf, eni en(x)
������
6 1p

2⇡

1p
N

✓Z 1

0
|f 0(t)|2dt

◆1/2

3.1.2. Approximation error in higher dimensions

Let ⇤ be some index set and let {e�}�2⇤ be a frame for L

2(B(0, R)). Then for
any f 2 L

2(B(0, R))

f(x) =
X

�2⇤
hf, e�iS�1

e�(x).

For some R̂, let

f̃(x) =
X

�2⇤\B(0,R̂)

hf, e�iS�1
e�(x).
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kf � f̃kL2(B(0,R)) =

������

X

�2⇤
hf, e�iS�1

e� �
X

�2⇤\B(0,R̂)

hf, e�iS�1
e�

������
L2(B(0,R))

=

������

X

�2⇤\B(0,R̂)c

hf, e�iS�1
e�

������
L2(B(0,R))

=

������

X

�2⇤\B(0,R̂)c

b
f(�)S�1

e�

������
L2(B(0,R))

6
X

�2⇤\B(0,R̂)c

| bf(�)|kS�1kke�kL2(B(0,R))

6
p

vol(B(0, R))

A

X

�2⇤\B(0,bR)c

| bf(�)|.

Let � 2 bRn
, � = (�1,�2, . . . ,�n). Pick j such that |�j | = sup16i6n |�i|. Then clearly

�j 6= 0. Denoting the time variable by t = (t1, t2, . . . , tn) and integrating by parts
k times with respect to tj (under the assumption that f is di↵erentiable that many
times with respect to the chosen variable and also that f and its derivatives vanish
on the boundary of B(0, R)),

b
f(�) =

Z

B(0,R)
f(t)e�2⇡i(�1t1+···+�ntn)

dt1dt2 . . . dtn

=
1

(�2⇡i�j)k

Z

B(0,R)

@

k
f

@t

k
j

dt1dt2 . . . dtn

and therefore

| bf(�)| 6 1

(2⇡)k|�j |k
Z

B(0,R)

�����
@

k
f

@t

k
j

����� dt1dt2 . . . dtn.

Using the fact that |�| 6 p
n|�j |,

| bf(�)| 6
✓p

n

2⇡

◆k 1

|�|k
Z

B(0,R)

�����
@

k
f

@t

k
j

����� dt1dt2 . . . dtn. (8)

This gives

kf � f̃kL2(B(0,R)) 6
p
vol(B(0, R))

A

X

�2⇤\B(0,R̂)c

✓p
n

2⇡

◆k 1

|�|k
Z

B(0,R)

�����
@

k
f

@t

k
j

����� dt1dt2 . . . dtn

6
p
vol(B(0, R))

A

✓p
n

2⇡

◆k Z

B(0,R)

�����
@

k
f

@t

k
j

����� dt1dt2 . . . dtn

X

�2⇤\B(0,R̂)c

1

|�|k .
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3.2. Functions with discontinuities

In this section, another estimate on the approximation error is given. This kind
of estimate applies to any function in L

2 and therefore can be used even when
the underlying function has discontinuities. These estimates are derived using the
techniques developed in the seminal paper by Landau (1967) [6].

Lemma 3.4: Let ⇤ = {�k}k2Z be a sequence with � = inf{|�m��n| : m 6= n} > 0.
Let E ✓ Rd be a compact set. There exists a constant B > 0 such that for all
F 2 PWE ,

X

k2Z

|F (�k)|  B

✓Z

Rd

|F (⇣)|2d⇣
◆1/2

.

The constant B depends on � and E.

Proof :

Let h 2 L

2(R) such that the support of bh ✓ B(0, �/2), and |h(x)| = 1 for all
x 2 E.
Recall that F 2 PWE means F 2 L

2(bRd), and F = b
f, where f vanishes outside of

set E.
Given F 2 PW (E), construct G = bg such that g(x) = f(x)

h(x) . Since f(x) = 0 when

x /2 E, so g(x) = 0 when x /2 E, i.e. G 2 PWE . Now, f(x) = g(x) h(x) implies
that F = G ⇤ bh. Hence,

F (�) =

Z

bRd

G(⇣) · bh(� � ⇣) d⇣ =

Z

|��⇣|<�/2
G(⇣) · bh(� � ⇣) d⇣

It follows that by taking absolute values and by the Cauchy-Schwartz inequality,

|F (�)| =
Z

bRd

|G(⇣)| · |bh(� � ⇣)| d⇣ 
 Z

|��⇣|<�/2
|G(⇣)|2 d⇣

!1/2

· kbhk2.

In particular, this means that

|F (�k)| = kbhk2 ·
 Z

|⇣��k|<�/2
|G(⇣)|2 d⇣

!1/2

.

Since |�j � �k| � � for all j 6= k, the above inequality implies that

X

k2Z

|F (�k)|  kbhk2 ·
✓Z

bRd

|G(⇣)|2 d⇣

◆1/2

. (9)

But |h(x)| � 1 for all x 2 E, so |g(x)|  |f(x)| for all x 2 E, which means
kGk2  kFk2, since F,G 2 PWE . It follows from (9) that

X

k2Z

|F (�k)|  kbhk2 · kFk2.

Since the function h depends on the set E and on �, so B ⌘ kbhk2 depends on E

and �. ⇤
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The proof of Theorem 3.2 shows that the approximation error kf � f̃k depends
on
P

n>N | bf(�n)|. The argument in the proof of the above lemma can be modified

to obtain an upper bound on
P1

k=N+1 |F (�k)|+
P�(N+1)

k=�1 |F (�k)|.
Theorem 3.5 : Given the same notation as above, where f 2 L

2(E) and {�k}k2Z
is a uniformly discrete sequence. Then

X

|k|>N

| bf(�k)|  kĥk2
 Z

|⇣|�N�
|G(⇣)|2d⇣

!1/2

,

where for all x 2 E, |g(x)|  |f(x)| and G = ĝ, F = f̂ .

Proof : By the estimate in (9), and the fact that the sequence {�k} is uniformly
discrete,

1X

k=N+1

|F (�k)|+
�(N+1)X

k=�1
|F (�k)|


✓Z 1

�N

|G(⇣)|2 d⇣

◆1/2

· kbhk2 +
✓Z ��N

�1
|G(⇣)|2 d⇣

◆1/2

· kbhk2


✓Z 1

N�
|G(⇣)|2 d⇣

◆1/2

· kbhk2 +
✓Z N�

�1
|G(⇣)|2 d⇣

◆1/2

· kbhk2

=

 Z

|⇣|�N�
|G(⇣)|2 d⇣

!1/2

· kbhk2.

⇤
Note: Since G = bg 2 L

2(R), so as N ! 1, we have

 Z

|⇣|�N�
|G(⇣)|2 d⇣

!1/2

! 0,

and in particular, as N ! 1,

X

|k|>N

| bf(�k)| ! 0.

4. Discussion

Given a set of linearly independent vectors, the Gram-Schmidt orthogonalization
process yields an orthogonal basis that spans the same vector space as the given
vectors. One drawback to this procedure is that the orthogonal basis depends on
the ordering of the original set of vectors. In the infinite-dimensional case, a natural
question arises: is it always possible to find an orthogonal set of vectors that is a
symmetric approximation to a given set of vectors? The precise nature of this
question is specified below, where the answer is shown to be negative.
Let H be an infinite-dimensional separable Hilbert space. Let {fj}1j=1 be a set of

linearly independent vectors in H. Let {ej}1j=1 be an ONB of l2. Define an operator
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D : l2 ! H by T (ej) = fj , for 1  j < 1. Assume that T is a bounded operator
and I � |T | is a Hilbert-Schmidt operator.
One looks for an ONB {vj} of H such that if {uj} is any orthonormal set of vectors
in H, then

1X

j=1

kvj � fjk2 
1X

j=1

kuj � fjk2.

Lemma 4.1: Given the same notation as above. Assume dim((Ran T )?) <

dim(Ker T ).
Then it is impossible to have

P1
j=1 kvj � fjk2 < 1.

Proof : Suppose
P1

j=1 kvj � fjk2 < 1.

Let U(ej) = vj , for 1  j < 1. Then U : l2 ! H is an isometry, and so the kernel
of U is {0}.
Denote the Hilbert-Schmidt norm of any operator A by kAkHS .

kU � Tk2HS =
1X

j=1

k(U � T )ejk2 =
1X

j=1

kvj � fjk2 < 1.

Thus the operator U � T is a Hilbert-Schmidt operator and hence is a compact
operator. Since I � |T | is Hilbert-Schmidt, so the kernel of T is finite-dimensional.
The complement of the range of T is also finite-dimensional, by the assumption
that dim((Ran T )?) < dim(Ker T ). This means that T is a Fredholm operator.
Since U � T is compact, U = T + (U � T ) is also Fredholm. Moreover, Index of U
= Index of T > 0. Note that Index of T > 0 by assumption.

But Index of U = dim(Ker U)� dim((Ran U)?) = 0� dim((Ran U)?).
This gives a contradiction, dim((Ran U)?) < 0.

Hence if dim((Ran T )?) < dim(Ker T ), then it is impossible for
P1

j=1 kvj �
fjk2 < 1.

⇤

Recall that if {fk}1k=1 is a frame for a separable Hilbert space and S is the frame
operator, then the canonical tight frame is given by {S�1/2

fk}1k=1. Although it
is not explicitly stated in the work of Frank, Paulsen, and Tiballi [19], it can be
shown that the Parseval frame obtained using the symmetric approximation is the
same as the canonical tight frame. To see why this is true, let T be an operator,
where T = W |T | is the polar decomposition. Since W is an isometry on the range
of |T |, hence T

⇤ = |T |W ⇤ = W

⇤
W |T |W ⇤

.

Now, compute

TT

⇤ = (W |T |)(W ⇤
W |T |W ⇤) = (W |T |W ⇤)(W |T |W ⇤)

and therefore |T ⇤| = (TT ⇤)1/2 = W |T |W ⇤. That means

|T ⇤|W = (W |T |W ⇤)W = (W |T |)(W ⇤
W ) = T.

So the tight frame obtained in the symmetric approximation is the same as the
canonical tight frame if it can be demonstrated that W (ej) = S

�1/2
fj , where
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the synthesis operator T is defined by T (ej) = fj . But by the calculations just
performed,

(TT ⇤)1/2Wej = Tej

or, S1/2
Wej = Tej

or, Wej = S

�1/2(Tej)

or, W (ej) = S

�1/2
fj ,

which completes the demonstration.

5. Conclusion

In this paper, an explicit construction of a Parseval frame that is the symmetric
approximation of a Fourier frame on a spiral has been considered. For the sake of
applications, the focus is on Fourier frames on a spiral but the technique can be
applied to any other frame. In the case of a finite frame, the Gram-Schmidt process
is first used to get an ONB for the space spanned by the frame and then the polar
decomposition of the matrix corresponding to the synthesis operator of the frame
gives the required Parseval frame. The reconstruction of functions lying in the span
of such Fourier frames on spirals has been studied. By using a Parseval frame that
spans the same space as the original Fourier frame, the reconstruction avoids the
need to compute the inverse of the frame operator of the original frame. Besides,
the Parseval frame that is obtained by considering the symmetric approximation
enables one to reconstruct a function by only using the measurements obtained
from the original Fourier frame.
In the case of an infinite dimensional Hilbert space, even after finding a Parse-

val frame, it is not possible to use an infinite frame and one can only use finitely
many measurements. This leads to some approximation of the function to be re-
constructed and results in approximation error. Such approximation error has also
been estimated.
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