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Abstract. Frames have become standard tools in signal processing due to their robustness to transmission

errors and their resilience to noise. Equiangular tight frames (ETFs) are particularly useful and have been

shown to be optimal for transmission under a certain number of erasures. Unfortunately, ETFs do not exist

in many cases and are hard to construct when they do exist. However, it is known that an ETF of d + 1

vectors in a d dimensional space always exists. This paper gives an explicit construction of ETFs of d + 1

vectors in a d dimensional space. This construction works for both real and complex cases and is simpler

than existing methods. The absence of ETFs of arbitrary sizes in a given space leads to generalizations of

ETFs. One way to do so is to consider tight frames where the set of (acute) angles between pairs of vectors

has k distinct values. This paper presents a construction of tight frames such that for a given value of k, the

angles between pairs of vectors take at most k distinct values. These tight frames can be related to regular

graphs and association schemes.
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1. Introduction

1.1. Background and motivation. The maximum cross correlation between pairs in a set of N unit

vectors {f1, . . . , fN} in Cd is bounded below by the Welch bound [1]:

(1.1) max
i 6=j
|〈fi, fj〉| ≥

√
N − d
d(N − 1)

, N ≥ d.

It is well known that equality is attained in (1.1) when the set {f1, . . . , fN} is an equiangular tight frame

(ETF) [2, 3]. Sets that attain the Welch bound arise in many different areas as in communications, quantum

information processing, and coding theory [1, 4, 5, 6, 7, 8]. Consequently, the problem of constructing ETFs

and determining conditions under which they exist has gained substantial attention [2, 9, 10, 11, 12, 13, 14,

15]. For an ETF, the associated Gram matrix can be written as

(1.2) G = I + αQ

where I is the identity matrix, α is the Welch bound
√

N−d
d(N−1) , and Q is a Hermitian matrix with zeros

along the diagonal and unimodular entries elsewhere. This means that the Gram matrix has two distinct
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eigenvalues: zero and N
d with multiplicities N − d and d, respectively. From (1.2), this implies that the two

distinct eigenvalues of the matrix Q are

λ1 = − 1

α
= −

√
d(N − 1)

N − d
,

λ2 =
N − d
dα

=

√
(N − 1)(N − d)

d
(1.3)

with multiplicities N − d and d, respectively. The matrix Q in (1.2) is known as the signature matrix of the

ETF [9]. The problem of constructing an ETF thus reduces to the task of constructing a signature matrix

Q with eigenvalues given by (1.3). Conditions on Q for being the associated signature matrix of an ETF

have been discussed in [2, 9, 11, 12, 13] among others. A graph theoretic approach to constructing ETFs

has been studied in [14]. A correspondence recently discovered by Fickus et al. [15] uses Steiner systems

to directly construct the frame vectors of certain ETFs, bypassing the common technique of constructing a

suitable Gram matrix or signature matrix. This approach lets one construct highly redundant sparse ETFs.

However, in the real case this approach can give rise to ETFs only if a real Hadamard matrix of a certain

size exists.

Despite the desirability and importance of ETFs, these cannot exist for many pairs (N, d). When the

Hilbert space is Rd, the maximum number of equiangular lines is bounded by d(d+1)
2 and for Cd the bound

is d2 [16, 17]. Even when these restrictions hold, ETFs are very hard to construct and do not exist for many

pairs (N, d) [11]. This leads one to generalizing the notion of an ETF. For a real ETF, the off-diagonal entries

of the Gram matrix are either α or −α, where α is the Welch bound. In other words, the off-diagonal entries

of the Gram matrix all have modulus equal to α. Generalizing this notion, a tight frame whose associated

Gram matrix has ones along the diagonal and off-diagonal entries with k distinct moduli will be called a

k-angle tight frame. Under this definition, ETFs are viewed as 1-angle tight frames.1 Besides generalizing

the notion of an ETF, k-angle tight frames prove to be important also due to their connection to graphs

and association schemes as discussed in Section 2. It is worth mentioning here that sets of vectors such that

the absolute value of the inner product between distinct vectors takes k distinct values has been mentioned

in [20], and upper bounds on the size of such sets form the content of the fundamental work done in [17, 21].

However, explicit constructions of such sets for arbitrary k do not seem to exist in the literature.

With the above motivation in mind, the main contribution of the work presented here involves the con-

struction of k̂-angle tight frames with k̂ being less than or equal to some given positive integer k (see

Theorem 4.7). A straightforward construction of ETFs of d + 1 vectors in Rd or Cd is also presented. It

is known that in this case the existence of ETFs is guaranteed. A nice construction suggested in [22] leads

1It is to be noted that often in the literature, a unit-normed tight frame is called a two-distance tight frame [18, 19] if the
off-diagonal entries of the associated Gram matrix take on either of two values a and b. In that case, real ETFs are thought of

as two-distance tight frames instead of 1-angle tight frames, as done here.
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to ETFs for Cd, whereas the construction presented here applies to both Cd and Rd, and is simpler. Sev-

eral constructions of 2-angle tight frames in Cd or Rd are also discussed in this work and are connected to

mathematical objects called mutually unbiased bases (MUBs).

1.2. Notation and preliminaries. Given a set {f1, . . . , fN} of vectors in Rd or Cd, let F be the matrix

whose columns are the vectors f1, . . . , fN . For a tight frame the d × d matrix FF ∗ is a multiple of the

identity. The matrix F ∗F is the Gram matrix of the set {f1, . . . , fN} and has the same non-zero eigenvalues

as those of FF ∗. The entries of the Gram matrix are the inner products of the vectors {f1, . . . , fN}. By an

equiangular tight frame (ETF) is meant a tight frame {f1, . . . , fN} for a d dimensional space H such that

the frame bound is N
d , ‖fi‖ = 1, for i = 1, . . . , N, and |〈fi, fj〉| = α, 1 ≤ i 6= j ≤ N. Here α is the Welch

bound given in (1.1). Throughout, H will be either Cd or Rd.2 A frame of N vectors in Rd (respectively, Cd)

will be referred to as an (N, d) real (respectively, complex) frame. When H is not specified, the frame will

be called an (N, d) frame. If Q corresponds to an ETF in the sense of (1.2) then it will be called a signature

matrix.

1.3. Outline. The paper is divided as follows. Section 2 motivates the study of k-angle tight frames by

discussing their relation to concepts in graph theory and coding theory. Given a positive integer d, a simple

and straightforward method of constructing a (d+ 1, d) real or complex equiangular tight frame is discussed

in Section 3. In Section 4, the main result on k-angle tight frames is given in Theorem 4.7. For a given k,

Theorem 4.7 gives a construction of tight frames such that there are at most k distinct angles between pairs

of vectors.

2. k-angle tight frames, regular graphs, and association schemes

As already mentioned in Section 1 above, k-angle tight frames can be connected to mathematical objects

arising in graph theory and coding theory such as regular graphs and association schemes. The connection

of ETFs to graphs is as follows [2]. Suppose that the Gram matrix G associated with an ETF has ones along

the diagonal and ±α elsewhere. Then

Q =
1

α
(G− I)

is the Seidel adjacency matrix of a regular two-graph [20, 23]. Barg et al. [18] have shown a correspondence

between non-equiangular 2-angle tight frames and strongly regular graphs. In the case of 3-angle tight frames

an analogous connection may be drawn to regular graphs. In particular, let G = I + c1Q1 + c2Q2 + c3Q3

be the Gram matrix of a 3-angle tight frame where ci 6= ±cj for i 6= j, ci 6= 0 and Qi is a zero diagonal

symmetric binary matrix for i = 1, 2, 3. Then Qi is the adjacency matrix for a regular graph for i = 1, 2, 3

if and only if u = [1 . . . 1]T ∈ RN is an eigenvector of G. The details will form part of a separate paper.

2The results can be easily generalized to any d-dimensional Hilbert space H since H would be isomorphic to Rd or Cd.
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Certain k-angle tight frames also provide examples of association schemes [20]. If G = I+c1Q1+· · ·+ckQk

is the Gram matrix of a k-angle tight frame, where Qi is a zero diagonal symmetric binary matrix for

1 ≤ i ≤ k, then {I,Q1, . . . , Qk} forms an association scheme if QiQj = QjQi for 1 ≤ i, j ≤ k.

Further, k-angle tight frames are specific examples of what Delsarte et al. [17] refer to as A-sets. For a

given finite dimensional Hilbert space, upper bounds on the size of an A-set, and therefore on the number

of vectors in a k-angle tight frame, are given in [17, 20].

3. Construction of (d+ 1, d) equiangular tight frames

Goyal and Kovačević [22] have previously given an elegant characterization of (d + 1, d) complex ETFs

in terms of harmonic tight frames. Although this allows finding frame expansions by using Fast Fourier

Transform algorithms, computing the frame vectors themselves requires a series of d trigonometric evaluations

and d non-trivial scalar multiplications. If a trigonometric evaluation is considered as a single operation, then

using harmonic tight frames to get a (d+ 1, d) ETF requires O(d2) operations for each vector. Theorem 3.1

below takes a different approach by characterizing the signature matrices of real as well as complex (d+1, d)

ETFs, whereas results in [22] only give complex ETFs. A benefit of this result is that it gives a method

to compute the vectors of a (d + 1, d) ETF such that each frame vector may be computed using only O(d)

operations (see Remark 3.6).

Theorem 3.1 below is a complete, constructive characterization of signature matrices of (d+ 1, d) ETFs.

Due to (1.2), the Gram matrix of a (d+ 1, d) ETF is

(3.1) G = Id+1 +
1

d
Q

with eigenvalues 0 and d+1
d where Id+1 denotes the (d + 1) × (d + 1) identity matrix. It follows from work

in [9] that being a (d+ 1, d) ETF is equivalent to the signature matrix Q satisfying

(3.2) Q2 = (λ1 + λ2)Q− λ1λ2Id+1

where λ1 = −d and λ2 = 1 are the eigenvalues of Q in this case. This fact will be used in the proof of

Theorem 3.1. Even though the construction in Theorem 3.1 below is done for complex ETFs, the exact same

construction gives real (d+ 1, d) ETFs as well.

Theorem 3.1. Let Q be a (d+ 1)× (d+ 1) matrix with complex entries. Then Q is a signature matrix for

a (d+ 1, d) complex ETF if and only if Q = Id+1 − xx∗ for some x ∈ Cd+1 with unimodular entries.



k-ANGLE TIGHT FRAMES 5

Proof. Let x ∈ Cd+1 have unimodular entries and let Q = Id+1 − xx∗. By computation, and using the fact

that ‖x‖2 = d+ 1, it follows that

Q2 = Id+1 − 2xx∗ + (d+ 1)xx∗

= Q+ dxx∗

= Q+ dxx∗ + dId+1 − dId+1

= Q− dQ+ dId+1

= (1− d)Q− (−d)Id+1

= (λ1 + λ2)Q− λ1λ2Id+1.

This shows that every matrix of the form Q = Id+1 − xx∗, for x ∈ Cd+1 with unimodular entries, satisfies

(3.2) and is therefore the signature matrix for a (d+ 1, d) ETF.

Now let Q be a signature matrix for a complex (d + 1, d) ETF. By (1.3), Q is a Hermitian matrix with

eigenvalues λ1 = −d and λ2 = 1. Note that the multiplicities of λ1 = −d and λ2 = 1 are 1 and d, respectively.

Let x be an eigenvector associated with λ1 = −d and satisfying ‖x‖2 = d + 1. Since Q is Hermitian there

exists an orthogonal basis for Cd+1 of eigenvectors of Q, say {x, y1, . . . , yd}, where yj , 1 ≤ j ≤ d, are

eigenvectors for the eigenvalue 1. Let z ∈ Cd+1. Then z can be written as

z =

d∑
j=1

cjyj + cd+1x

and

Qz =

d∑
j=1

cjQyj + cd+1Qx =

d∑
j=1

cjyj − cd+1dx

= z − (d+ 1)cd+1x.

On the other hand, a similar calculation using the orthogonality of the set {x, y1, . . . , yd} and the fact that

‖x‖2 = d+ 1, yields

(Id+1 − xx∗)z = z − (d+ 1)cd+1x.

Since z was arbitrary, it follows that Q = Id+1 − xx∗. To see that x = (xj)1≤j≤d+1 has unimodular

entries, note that since Q has zeros along the diagonal, the equality Q = Id+1 − xx∗ forces xjxj = 1 for

1 ≤ j ≤ d+ 1. �

Remark 3.2. Any vector x ∈ Cd+1 with unimodular entries is an eigenvector of Q = Id+1 − xx∗ corre-

sponding to the eigenvalue −d. Further, the signature matrix Q and the corresponding Gram matrix G have
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the same eigenvectors. From the proof of Theorem 3.1, the set {x, y1, . . . , yd} is also a set of orthogonal

eigenvectors of G. The eigenvalue of G for the eigenvector x is zero.

Algorithm 3.3 below outlines how Theorem 3.1 may be used to construct a (d + 1, d) ETF. Recall that

for a (d+ 1, d) ETF, the Welch bound α is 1
d .

Algorithm 3.3.

Step 1: Choose a vector x in Rd+1 or Cd+1 with unimodular entries, and construct the signature matrix Q

from x as described in Theorem 3.1.

Step 2: Construct the corresponding Gram matrix G = I + 1
dQ.

Step 3: Diagonalize G into G = UDU∗, where U is a unitary matrix of eigenvectors of G and D is the

diagonal matrix of corresponding eigenvalues arranged in descending order. For a (d+ 1, d) ETF:

D = diag



d+ 1

d
,
d+ 1

d
, . . . ,

d+ 1

d︸ ︷︷ ︸
d times

, 0


 .

Step 4: Obtain the frame vectors from the rows of the matrix U
√
D, where

√
D denotes the diagonal matrix

whose entries are the positive square roots of corresponding entries of D.

Example 3.4 (A real (6, 5) ETF). Let the vector x ∈ R6 be [1, 1,−1, 1,−1, 1]T. Since α = 1
5 , the Gram

matrix is

G = I6 +
1

5
Q =



1 − 1
5

1
5 − 1

5
1
5 − 1

5

− 1
5 1 1

5 − 1
5

1
5 − 1

5

1
5

1
5 1 1

5 − 1
5

1
5

− 1
5 − 1

5
1
5 1 1

5 − 1
5

1
5

1
5 − 1

5
1
5 1 1

5

− 1
5 − 1

5
1
5 − 1

5
1
5 1


.

Since the last column of U
√
D is 0, a real (6, 5) ETF is then given by the rows of the matrix

√
6

5

[
u1 u2 u3 u4 u5

]
=



√
3
5

1
2

√
4
5

1
3

√
9
10

1
4

√
24
25

1
5

−
√

3
5

1
2

√
4
5

1
3

√
9
10

1
4

√
24
25

1
5

0
√

4
5 − 1

3

√
9
10 − 1

4

√
24
25 − 1

5

0 0 −
√

9
10

1
4

√
24
25

1
5

0 0 0
√

24
25 − 1

5

0 0 0 0 −1


.
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Example 3.5 (A complex (4, 3) ETF). Let x ∈ C4 be given by x = [1, i,−1,−i]T. The Gram matrix of the

ETF is

G =



1 i
3

1
3 − i

3

− i
3 1 i

3
1
3

1
3 − i

3 1 i
3

i
3

1
3 − i

3 1


.

The row vectors of

√
4

3

[
u1 u2 u3

]
=



−i
√

2
3 −

√
2

3
i
3

−
√

2
3 −i

√
2

3 − 1
3

0 − 2
√

2
3 − i

3

0 0 −1


form a complex (4, 3) ETF.

Remark 3.6. It can be checked that the vectors yj = [x1/j, x2/j, . . . , xj−1/j, xj/j,−xj+1, 0, . . . , 0]T form

an orthogonal basis of eigenvectors for the Gram matrix of the real (d + 1, d) ETF with signature matrix

Q = I − xxT, where x = [xj ]1≤j≤d+1. Each xj = ±1 so each entry (except for the very last one) differs from

the others by only a sign. So in essence only one multiplication is necessary to obtain each vector yj .

To get the frame vectors each vector yj has to be scaled. The appropriate scaling factors for each vector

are the constants

cj =

√
d+ 1

d

1

‖yj‖
=

√
d+ 1

d

√
j

j + 1
.

The matrix that gives the associated frame is the matrix V = [v1 . . . vd] where each vector vj is given by

vj = cjyj .

Since every entry of yj (except for the (j + 1)th entry) differs from the others by only a sign, only two

multiplications (one for the first j entries and one for the (j + 1)th entry) are essentially necessary to obtain

vj from yj . So with these assumptions it appears that to get the frame vectors from the given vector x

requires 2(d+ 1) multiplications.

4. Construction of k-angle tight frames

4.1. 2-angle tight frames. As a first step towards generalizing ETFs, one considers constructing 2-angle

tight frames. In Example 4.4 below, several examples of 2-angle tight frames are presented. The following

lemma is needed.
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Lemma 4.1. Let d ∈ N and let J denote the d × d matrix whose entries are all one. Then the matrix U

given by U = 2
dJ − Id is orthogonal, where Id is the d× d identity matrix.

Proof. Since J2 = dJ , and 2
dJ − Id is symmetric, it follows that

(
2

d
J − Id

)(
2

d
J − Id

)T

=

(
2

d
J − Id

)(
2

d
J − Id

)
=

4

d2
J2 − 4

d
J + Id = Id.

�

Definition 4.2. A d× d matrix H is said to be a real Hadamard matrix if HHT = dId and the entries

of H are either −1 or 1. Similarly, H is said to be a complex Hadamard matrix if HH∗ = dId and the

entries of H are unimodular.

If H is a d × d real (respectively, complex) Hadamard matrix, then 1√
d
H is orthogonal (respectively,

unitary).

Remark 4.3. The existence and classification of real and complex Hadamard matrices is an important open

problem, although the complex case provides more options. In particular, a d×d complex Hadamard matrix

for any d ∈ N is given by the DFT matrix with unimodular entries. Real Hadamard matrices are rarer, but

a construction due to Sylvester provides a 2n × 2n Hadamard matrix for every n ∈ N [24].

Example 4.4. Let F1 be the standard basis of Rd or Cd. In each example below, the tightness of the

resulting frame follows from the fact that the union of two finite unit-normed tight frames of a vector space

is again a finite unit-normed tight frame for the same vector space.

i. Let F2 be the orthonormal basis of Rd obtained from the columns of the matrix U in Lemma 4.1. If

d = 4 then F1 ∪ F2 is a real (8, 4) 2-angle tight frame, otherwise, F1 ∪ F2 is a real (2d, d) 3-angle tight

frame.

The Gram matrix of F1 ∪ F2 is

G1 = FT
1 F1 =

 Id U

UT Id

 =

 Id
2
dJ − Id

2
dJ − Id Id

 .
The only possible moduli of the off-diagonal entries in G1 are 0, 2

d , and 1 − 2
d . When d = 4, the only

possible moduli are 0 and 1
2 .

ii. Suppose that a real d×d Hadamard matrix H exists and let F3 be the orthonormal basis of Rd obtained

from the columns of 1√
d
H. Then F1 ∪F3 is a real (2d, d) 2-angle tight frame. The only possible moduli

of the off-diagonal entries in the Gram matrix are 0 and 1√
d
.
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iii. Let F4 be the orthonormal basis of Cd obtained from the columns of the normalized DFT matrix. Then

F1 ∪ F4 is a complex (2d, d) 2-angle tight frame. Again, the moduli of the off-diagonal entries in the

Gram matrix are either 0 or 1√
d
.

The construction in Example 4.4 iii. will also provide (2d, d) 2-angle tight frames if the normalized DFT

matrix is replaced by an arbitrary normalized complex Hadamard matrix as shown in Theorem 4.6. Going

further, mutually unbiased Hadamards can be used to construct 2-angle tight frames with higher redundancy.

Definition 4.5. Consider a collection {H1, H2, . . . ,Hn} of d × d Hadamard matrices. These matrices are

said to be mutually unbiased Hadamards if 1√
d
H∗jHk is again a Hadamard matrix for all 1 ≤ j < k ≤ n.

As mentioned in [25], the construction of n mutually unbiased Hadamards of size d×d is equivalent to the

construction of n + 1 mutually unbiased bases (MUBs); that is, a collection {E1, . . . , En+1} of orthonormal

bases Ej = {e(j)
l }dl=1 such that |〈e(j)

l , e
(k)
m 〉| = 1√

d
for 1 ≤ l,m ≤ d and 1 ≤ j < k ≤ n + 1. It is known

from [6] that the maximal set of MUBs in any given d-dimensional Hilbert space is of size at most d + 1.

Constructions presented in [6] provide MUBs of maximal size (that is, d+1 MUBs in a d-dimensional space)

in any space whose dimension is pq for prime p. The question of the existence of maximal MUBs in other

dimensions remains an open problem.

Theorem 4.6. Let d, n ∈ N.

i. Let H be a d× d Hadamard matrix. Then the columns of[
Id

1√
d
H

]
form a 2-angle (2d, d) tight frame.

ii. Let {H1, H2, . . . ,Hn} be a collection of d × d mutually unbiased Hadamards where n ≤ d. Then the

columns of [
Id

1√
d
H1

1√
d
H2 · · · 1√

d
Hn

]
form a 2-angle ((n+ 1)d, d) tight frame.

Proof.

i. The justification of this statement is the same as the one given in Example 4.4 part iii. Just replace the

DFT matrix with 1√
d
H.

ii. The frame is a union of n+ 1 orthonormal bases and so must be a tight frame. It remains to show that

the frame is a 2-angle frame. Let

F2 =

[
Id

1√
d
H1 · · · 1√

d
Hn

]
.
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The Gram matrix G2 of this frame is

G2 = F ∗2 F2 =



Id
1√
d
H1

1√
d
H2 · · · 1√

d
Hn

1√
d
H∗1 Id

1
dH
∗
1H2 · · · 1

dH
∗
1Hn

...
...

...
. . .

...

1√
d
H∗n

1
dH
∗
nH1

1
dH
∗
nH2 · · · Id


.

Since {H1, . . . ,Hn} is a collection of mutually unbiased Hadamards, each entry in 1
dH
∗
jHk for 1 ≤ j <

k ≤ n has modulus 1√
d
, as does each entry in 1√

d
Hj for 1 ≤ j ≤ n . Therefore each off-diagonal entry of

G2 has modulus either 0 or 1√
d
, which implies that the frame is a 2-angle frame.

�

4.2. Construction of k-angle tight frames; k ≥ 2. In this subsection, a general method of constructing

tight frames is presented such that for a given k, the number of distinct angles between vectors is at most k.

Theorem 4.7. Let d, k ∈ N with k < d + 1, and set d′ =
(
d+1
k

)
. Denote the collection of all subsets of

{1, . . . , d+1} of size k by {Λi}d
′

i=1. Let {fi}d+1
i=1 ⊆ Rd denote the ETF with 〈fi, fj〉 = − 1

d for all i 6= j. Define

a new collection {gi}d
′

i=1 as follows:

gi :=

∑
j∈Λi

fj

‖
∑

j∈Λi
fj‖

.

Then {gi}d
′

i=1 forms a k̂-angle tight frame of d′ vectors in Rd, where k̂ ≤ k.

To prove this theorem, the following results are needed.

Lemma 4.8. Under the setting and assumptions of Theorem 4.7, ‖
∑

j∈Λi
fj‖ is independent of i.

Proof. By a direct calculation, ∥∥∥∥∥∥
∑
j∈Λi

fj

∥∥∥∥∥∥
2

=

〈∑
j∈Λi

fj ,
∑
j′∈Λi

fj′

〉

=
∑
j∈Λi

∑
j′∈Λi

〈fj , fj′〉

=
∑
j∈Λi

‖fj‖2 +
∑
j 6=j′

〈fj , fj′〉 .

The right hand side simplifies to k + k(k − 1)(− 1
d ), and so for all i∥∥∥∥∥∥

∑
j∈Λi

fj

∥∥∥∥∥∥ =

√
k(d+ 1− k)

d
.

�
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Lemma 4.9. Let K denote the matrix whose columns are the binary vectors in Rd+1 with exactly k ones

and note that there are d′ =
(
d+1
k

)
such vectors. In particular, set

K =

[
k1 · · · kd′

]
where supp kj = Λj. Then

KKT =

(
d− 1

k − 1

)
Id+1 +

(
d− 1

k − 2

)
J

where J is the (d+ 1)× (d+ 1) matrix of ones.

Proof. Set K = [kij ] for 1 ≤ i ≤ d+ 1 and 1 ≤ j ≤ d′ and note that kij = 1 if and only if i ∈ Λj . Let

k̃ij =

d′∑
m=1

kimkjm

denote the (i, j)th entry ofKKT. Then k̃ii =
∑d′

m=1 k
2
im is precisely the number of subsets Λm ⊆ {1, . . . , d+1}

of size k that contain i, so k̃ii =
(

d
k−1

)
=
(
d−1
k−1

)
+
(
d−1
k−2

)
. Similarly, if i 6= j then k̃ij =

∑d′

m=1 kimkjm counts

the number of subsets Λm that contain both i and j, so k̃ij =
(
d−1
k−2

)
if i 6= j. Thus KKT has the desired

form. �

The frame potential [26] of a set of vectors {xi}Ni=1 is

FP{xi}Ni=1 :=

N∑
i=1

N∑
j=1

|〈xi, xj〉|2.

Note that the frame potential is the trace of the square of the Gram matrix of {xi}Ni=1.

Theorem 4.10. [26] For a set of N unit vectors {xi}Ni=1 in a d-dimensional space, if N ≥ d, the minimum

value of the frame potential is N2/d, and the minimizers are precisely the unit normed tight frames of the

underlying space.

The proof of Theorem 4.7 is now provided below.

Proof of Theorem 4.7. First it will be shown that {gi}d
′

i=1 as defined in the statement of the theorem is a

unit normed tight frame. Let K denote the matrix given in Lemma 4.9. If F is the matrix with columns

{fi}d+1
i=1 , then it follows that Fki =

∑
j∈Λi

fj . The matrix with columns {gi}d
′

i=1 can then be written as√
d

k(d+ 1− k)
FK,

where the scalar term comes from Lemma 4.8. This implies that the Gram matrix G1 of {gi}d
′

i=1 is the

matrix

d

k(d+ 1− k)
(FK)T(FK) =

d

k(d+ 1− k)
KTGK
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where G denotes the Gram matrix of {fi}d+1
i=1 . It will be shown that {gi}d

′

i=1 is tight by computing its frame

potential and using Theorem 4.10. Let c1 =
(
d−1
k−1

)
and c2 =

(
d−1
k−2

)
. Then by Lemma 4.9

FP{gi}d
′

i=1 = trG2
1

=

(
d

k(d+ 1− k)

)2

tr(KTGKKTGK)

=

(
d

k(d+ 1− k)

)2

tr(KTG(c1I + c2J)GK).

According to the hypothesis of Theorem 4.7, 〈fi, fj〉 = − 1
d for all i 6= j. This makes the product GJ equal

to the (d+ 1)× (d+ 1) zero matrix. Therefore,

FP{gi}d
′

i=1 = c1

(
d

k(d+ 1− k)

)2

tr(KTG2K)

= c1

(
d

k(d+ 1− k)

)2

tr(G2KKT)

= c1

(
d

k(d+ 1− k)

)2

tr(G2(c1I + c2J))

= c21

(
d

k(d+ 1− k)

)2

tr(G2)

=

(
d

k(d+ 1− k)
c1

)2
(d+ 1)2

d

where the last equality follows from the fact that {fi}d+1
i=1 is a unit normed tight frame and the result in

Theorem 4.10. Further simplification gives

FP{gi}d
′

i=1 =

(
d

k(d+ 1− k)
c1

)2
(d+ 1)2

d

=

[
(d+ 1)d

k(d+ 1− k)

(
d− 1

k − 1

)]2
1

d

=

(
d+ 1

k

)2
1

d

=
(d′)2

d
.

Hence {gi}d
′

i=1 is a unit normed tight frame for Rd by Theorem 4.10.

It remains to be shown that the set {gi}d
′

i=1 is also a k̂-angle frame where k̂ ≤ k. Let i, j ≤ d′ with i 6= j.

By the proof of Lemma 4.8

〈gi, gj〉 =
d

k(d+ 1− k)

∑
i′∈Λi

∑
j′∈Λj

〈fi′ , fj′〉 .
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Now set l = |Λi ∩ Λj |. Then the double summation can be rewritten as

∑
i′∈Λi

∑
j′∈Λj

〈fi′ , fj′〉 =
∑

i′∈Λi∩Λj

∑
j′∈Λj∩Λi

〈fi′ , fj′〉+
∑

i′∈Λi\Λj

∑
j′∈Λj∩Λi

〈fi′ , fj′〉

+
∑

i′∈Λi∩Λj

∑
j′∈Λj\Λi

〈fi′ , fj′〉+
∑

i′∈Λi\Λj

∑
j′∈Λj\Λi

〈fi′ , fj′〉

=

[
l(1)− l(l − 1)

1

d

]
+

[
−1

d
(k − l)l

]
+

[
−1

d
(k − l)l

]
+

[
−1

d
(k − l)2

]
= l − 1

d
(k2 − l).

Therefore

〈gi, gj〉 =
d

k(d+ 1− k)

[
l − 1

d
(k2 − l)

]
=
l(d+ 1)− k2

k(d+ 1− k)
.

Since 0 ≤ l ≤ k − 1 if i 6= j, there are k different choices for l in the above formula. Hence 〈gi, gj〉 can take

on at most k different values when i 6= j, which finishes the proof. �
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