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ABSTRACT

An image reconstruction algorithm using compressed sens-
ing (CS) with deterministic matrices of second-order Reed-
Muller (RM) sequences is introduced. The 1D algorithm of
Howard et al. using CS with RM sequences suffers signi cant
loss in speed and accuracy when the degree of sparsity is not
high, making it inviable for 2D signals. This paper describes
an ef cient 2D CS algorithm using RM sequences, provides
medical image reconstruction examples, and compares it with
the original 2D CS using noiselets. This algorithm entails sev-
eral innovations that enhance its suitability for images: initial
best approximation, a greedy algorithm for the nonzero loca-
tions, and a new approach in the least-squares step. These
enhancements improve delity, execution time, and stability
in the context of image reconstruction.

Index Terms— Compressed Sensing, Reed-Muller Se-
quences, Image Reconstruction

1. INTRODUCTION

Compressive sensing (CS) methods are receiving attention in
connection with reconstruction of pixelated images from pro-
jections onto sets of sampling vectors that are considerably
smaller than the number of pixels in the image [4]. This is par-
ticularly true in regime of medical imaging (e.g., [7]), where
certain modalities provide favorable levels of sparsity com-
pared to natural images. This paper is primarily concerned
with using second-order Reed-Muller (RM) sequences for de-
terministic compressed sensing in the imaging regime, espe-
cially for medical images. The starting point for this work
is a 1D algorithm introduced by Howard et al. in [5], which
requires several modi cations to enable ef cient and high-
delity reconstruction of images.

If P is a m × m binary symmetric matrix and a =
(a0, ..., am−1)T and b = (b0, ..., bm−1)T are binary vectors
in Z

m
2 , a second-order RM sequence of length 2m is obtained
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from these parameters by

φP,b(a) =
(−1)wt(b)

√
2m

i(2b+Pa)T a. (1)

In this expression, wt(b) is the weight of b, i.e., the number of
ones in b. If P has zeros on the main diagonal, then φP,b is
real-valued. The compressed sensing matrix discussed in [5]
has the form

ΦRM =
[
UP1 UP2 · · · UP

2m(m−1)/2

]
, (2)

where each UPj is a 2m × 2m orthogonal matrix whose
columns are the second-order RM sequences obtained by x-
ing Pj in (1) and letting b range through all possible binary
m-vectors. Since there are 2m(m−1)/2 possible m × m
binary zero-diagonal symmetric matrices, the associated
full RM matrix has dimension 2m × 2m(m+1)/2. De n-
ing N = 2m(m+1)/2 and n = 2m, a k-sparse signal x ∈ CN

yields a measurement y = ΦRMx ∈ Cn, which is the super-
position of k RM functions

y(a) = z1φP1,b1(a)+ z2φP2,b2(a)+ · · ·+ zkφPk,bk
(a). (3)

In (3), the numbers zj are the non-zero components of x and
terms corresponding to the zeros in x are omitted. Note that
Pj and bj may individually repeat in the equation. To recover
x, the deterministic reconstruction algorithm introduced in [5]
uses the fast Hadamard transform (FHT) to detect the loca-
tions of the nonzero elements in x deduce the corresponding
(Pj , bj) pairs one-by-one. Its computational complexity is
O(kn(log n)2). The magnitudes zj are then found by solv-
ing the associated least-squares problem. For reconstructing
sparse signals, in terms of reconstruction speed and delity,
this is more ef cient than �1 minimization with random ma-
trices, whose computational complexity is O(knN).

Despite its ef cacy in accurately reconstructing sparse 1D
signals, applying this algorithm directly to images does not
work well. This is because real images are not as sparse in any
transform domain as the 1D signals in [5], and therefore, the
reconstruction error becomes large. For example, a 128×128
image with 10% sparsity has 1638 nonzero coef cients. At
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least approximately 4000 measurements are needed in order
for the reconstruction to be correct. This implies that only
four P matrices in (2) are needed to solve y = ΦRMx ∈ C2m

,
and therefore, the ef ciency of nding nonzero locations is
not fully utilized in the imaging regime. Moreover, the al-
gorithm requires about 1638 iterations and the least-squares
computations become onerous.

Section 2 of this paper describes a deterministic algorithm
for compressed sensing and reconstruction of images using
RM sequences. Section 3 presents results of experiments with
256 × 256 medical images and compares these with results
obtained using noiselets, as described in [3]. Section 4 sum-
marizes the results.

2. METHOD

2.1. Construction of the compressive sensing matrix

As explained in the introduction, due to the sparsity nature of
images and rule of thumb in compressed sensing, only four
P matrices are needed for the sensing matrix, instead of the
entire matrix given in (2). Therefore, there is exibility to
construct the sensing matrix according to the choice of P ma-
trices. The statistics of inner products of two columns, each
of which is taken from UPi and UPj , respectively, are [8]

| 〈φPi,·|φPj ,·
〉 | =

{
1/

√
2l, 2l times,

0, 2m − 2l times,
(4)

where l = rank(Pi − Pj). If l = m, the inner products are
always 1/

√
2m, which is smaller than if l < m. This is desir-

able because the nonzero locations are unknown and the inner
products between any two columns are as small as possible.
Since the rank between two zero-diagonal symmetric binary
matrices is always even, m is even in this paper. The set of
zero-diagonal symmetric binary matrices such that the rank
between any two matrices is equal to m is called the Kerdock
set [6]. There are 2m−1 elements in the Kerdock set, and the
construction of the Kerdock set can be found in [2]. The sens-
ing matrices used in this paper are constructed in the form

Φ =
[
UP1 UP2 UP3 UP4

]
, (5)

where P1, P2, P3, and P4 can be any matrices from the Ker-
dock set. For example, the sensing matrix for a 256 × 256
(= 216) image is of the size 214 × 216. Therefore, only 25%
of the measurements are sampled.

2.2. Initial best approximation of the solution

We propose a method to detect a large portion of the nonzero
locations in one step, based on the knowledge from Fourier
analysis that the energy of the wavelet coef cients is concen-
trated in the upper-left region. This does not require a priori
knowledge of individual images. Write the measurements as

y = Φx =
[
UP1 UP2 UP3 UP4

]⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦
= UP1x1 + UP2x2 + UP3x3 + UP4x4, (6)

where x1, x2, x3, and x4 are vectors of the upper-left, lower-
left, upper-right, and lower-right coef cients, respectively.
The initial approximation estimates x1 by observing

UT
P1

y = x1 + UT
P1

UP2x2 + UT
P1

UP3x3 + UT
P1

UP4x4. (7)

The last three terms are small because x2, x3, and x4 are
much sparser and smaller than x1, and the rest of the terms
UT

P1
UP2 , U

T
P1

UP3 , and UT
P1

UP4 are small, as discussed in Sec.
2.1. Therefore, UT

P1
y ≈ x1. In the case when all nonzero lo-

cations are in the upper-left region, i.e., x2, x3, and x4 are
zero, UT

P1
y is equal to x1, which automatically completes the

image reconstruction.

(a) 256 × 256 image (b) wavelet coef cients
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(c) magnitude of x1 (d) |x1| in ascending order
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Fig. 1. In (b) it is shown the energy of wavelet coef cients is con-
centrated in the upper-left region; (c) and (e) show that |UT

P1y| ap-
proximates |x1| well; (d) is the plot of |x1| sorted in ascending order,
and nally, (f) is |UT

P1y| in ascending order.

Fig. 1 shows an example of this method, where (a) is the
Shepp-Logan phantom image of pixel resolution 256 × 256
and (b) shows its Haar wavelet coef cients. In (c) and (e), we
see that UT

P1
y well approximates x1. Therefore, even though

x1 is unknown, most of the nonzero locations in x1 can be
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detected. The graph in (f) sorts the magnitudes of the ap-
proximation in ascending order. Most of the nonzero loca-
tions in x1 can be detected by selecting the locations above
the rst critical point from the origin. In (f), such a critical
point is around 14000. Denoting the detected locations by
(Pl, bl), l = 1, ..., j, the magnitudes zl can be well estimated
by solving the following linear squares problem:

min
z

‖Az − y‖, (8)

where A is the matrix whose columns consist of φPl,bl
and

z = [z1, .., zj ]T . The pseudo-inverse solution of (8) is

zsol = (A∗A)−1A∗y, (9)

where ∗ is conjugate transpose. Since Pl = P1 in the initial
step, the solution is z = A∗y. Finally, subtracting the linear
(their respective magnitudes zl) sum of the found columns
from y gives the residual, y0(�) = y(�) − ∑j

l=1 zlφPl,bl
(�).

2.3. Reconstruction algorithm

This section describes the proposed method, which is summa-
rized in the following steps:

1. Get initial best approximation (see Sec. 2.2).
2. Find multiple (Pl, bl) pairs.
3. Determine zj by updated linear least squares solutions.
4. Get residual y0(�) = y0(�) −

∑j
l=1 zlφPl,bl

(�).
5. Repeats steps 2–4 until y0 is suf ciently small.

The second step rst “de-chirps” the samples residual
with all four P matrices in the measurement matrix, i.e., mul-
tiplication by φPj ,0 eliminates the quadratic term, and then
use the FHT to detect the remaining nonzero locations:

wPj (�) =
∣∣∣FHT

(
y0(�)φPj ,0(�)

)∣∣∣, j = 1, 2, 3, 4. (10)

Each obtained magnitude corresponds to a unique pair (Pj , �).
The largest magnitudes are selected and the corresponding
pairs give the nonzero locations.

The third step solves the magnitudes zj using (8). The
matrix A in the current step can be expressed as A = [Ã c],
where Ã is from the previous step and c is the newly found
columns. To solve the least squares problems without treat-
ing each problem (iteration) independently, we use an updated
pseudo inverse solution method whose computation is based
on previous calculations.

To obtain (9), rst nding the inverse of

A∗A =

[
Ã∗Ã Ã∗c
c∗Ã c∗c

]
(11)

can be made ef ciently by the Schur-Banachiewicz blockwise
inversion formula (e.g., see [1]):[
D E
F G

]−1

=
[
D−1 + D−1EV FD−1 −D−1EV

−V FD−1 V

]
, (12)

where V = (G − D−1E)−1. Note that D−1 is known from
the previous iteration and the size of V = (G − D−1E)−1

is small. A∗y can also be updated by only calculating c∗y, in
which the size of c is much smaller than the size of A.

3. RESULTS

In these experiments, each original image was sparsi ed by
computing its Haar wavelet transform and retaining a pre-
determined fraction of its wavelet coef cients, keeping the
largest and setting the rest to zero. Then, 25% noiselet mea-
surements and RM measurements were taken for noiselet and
RM reconstruction, respectively. Fig. 2 (a) is the 256 ×
256 vessel image with 10% sparsity. The reconstructed im-
age using (our implementation of) Candès and Romberg’s
method with noiselets [3] is shown in (b), which has notice-
able patches. The reconstructed image in (c) is by our method
and is identical to the reference image in (a). In (b), (d), and
(f), the respective horizontal slices at the center are shown and
the slice by our method is identical to the slice in the reference
image. The reconstruction error by our method (-283 dB), is
notably better than the error by noiselets (-19 dB), where the
error is de ned as:

Error(dB) = 10 log10

[ ||xactual − xreconstructed||2
||xactual||2

]
.

(13)
Fig. 3 shows image reconstruction for the 256×256 MRI

knee image. The true image is 10%-sparse and 25% samples
were used for reconstruction. Our method in this case also
outperformed the noiselet method. The error for RM was -
284 dB, whereas the error for noiselets was -22 dB.

Table 1 shows reconstruction error in dB for various 256×
256 images, using 25% measurements by the proposed algo-
rithm. The reconstruction works well up to around 10%.

Sparsity vessel knee phantom cameraman
6% -288 -289 -286 -289
7% -287 -288 -286 -287
8% -286 -286 -285* -286
9% -284 -285 N/A -282
10% - 283 -284 N/A -32

Table 1. Our method accurately reconstructs images with
sparsity up to around 10% with only 25% measurements.
*The phantom image is 7.27% sparse.

4. CONCLUSION

We have proposed a new image reconstruction algorithm
for the deterministic compressed sensing method especially
suitable for medical images. Compared to compressed sens-
ing reconstruction from noiselets, this algorithm provides
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Fig. 2. (a) 256 × 256 vessel image with 10% sparsity. (c) recon-
structed image with noiselets, error is -19 dB. (e) reconstructed im-
age with our method, whose error is smaller, -283 dB. The respective
horizontal slices in (b), (d), and (f) also show our result is identical
to the reference image.

improved reconstruction in terms of error (SNR) and com-
putational ef ciency. New aspect of the algorithm include
an initial best approximation step, which speeds up the solu-
tion and signi cantly decreases error (the proof is not shown
due to space limitation), as can be observed in the exam-
ples shown. The total computational complexity of nding
nonzero locations in the iterative step in our experiments is
O(1

5kn log n), which is much smaller than O(kn(log n)2)
for the algorithm in [5] on the same size problem. Finally,
an “updated least squares method” is incorporated to increase
computational ef ciency and stability.

5. ACKNOWLEDGMENTS

The authors wish to thank Robert Calderbank, Stephen
Howard, and Stephen Searle for discussions about Reed-
Muller codes and Jim Pipe for providing the medical images.

0 50 100 150 200 250
0

20

40

60

80

100

120

(a) reference image (b) pro le

0 50 100 150 200 250
0

20

40

60

80

100

120

(c) noiselets (d) pro le

0 50 100 150 200 250
0

20

40

60

80

100

120

(e) our method (f) pro le

Fig. 3. (a) 256 × 256 knee 10%-sparse image. (c) reconstructed
image with noiselet, error = -22 dB. (e) reconstructed image with
our method. The error is much smaller, -284 dB. The respective
horizontal slices in (b), (d), and (f) also show our result is identical
to the reference image.
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