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Abstract. Frame properties and conditions are determined that would minimize the error in signal recon-

struction or estimation in the presence of noise and erasures. The special focus here is on stochastic models.

These include estimating a random signal with zero mean and a general covariance matrix, minimizing the

mean-squared error (MSE) when the frame coefficients are erased according to some a priori probability

distribution in the presence of random noise, and also studying the use of stochastic frames in estimating

a random signal. In estimating a random signal from noisy coefficients, when a frame coefficient is lost or

erased, it is established that the MSE is minimized under certain geometric relationships between the frame

vectors and the signal. When the coefficients are erased according to some a priori distribution, conditions

are found for the norms of the frame vectors in terms of the probability distribution of the erasure so that the

MSE is minimized. Results obtained here also show how using stochastic frames can lead to more flexibility

in design and greater control on the MSE.
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1. Introduction and Background

Frame theory has gained significant attention in recent years due to applications in signal processing.

Representation of signals in terms of frames are robust to transmission losses and resilient to noise. The

purpose of this work is to determine conditions on frames so that signal reconstruction can be efficient in the

presence of erasures. The study of optimal frames for erasures has been done by other authors, most notably

in [5] and [4] where the latter also considers the presence of random noise in the frame measurements. Under

this class of work, much of the focus in the literature has been on deterministic models only. In contrast, the

work here is focused on stochastic models. These include considering a random signal, the frame coefficients

being erased according to some a priori probability distribution in the presence of random noise, and also

the use of stochastic frames. The analysis is almost entirely for the situation where there is a single erasure,

i.e, one of the frame coefficients is lost. Where applicable, comments are made on the situation with more

than one erasure. Under a stochastic model, the general idea is to minimize the mean-square error when

the signal is reconstructed from frame measurements that are corrupted by noise and erasures. Some of the

calculations involving random signals are inspired by the work in [7] where a random vector is reconstructed

from its noisy projections onto low-dimensional subspaces and under subspace erasures, using fusion frames.

However, some different aspects are considered here. Unlike in [7], the covariance matrix of the noise or the

signal is not assumed to be diagonal. Additionally, the results here are for frame measurements, and not for
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fusion frame measurements. Also, as far as we are aware, assuming some a priori probability distribution on

the erasure location and the use of stochastic frames have not been addressed elsewhere.

Some basic definitions and facts on frames are now given. For details, the reader is referred to [1]. In

what follows, the setting will be a finite d-dimensional Hilbert space H. Let Φ = {fi}mi=1 ⊆ H denote a set of

m vectors in H. The set Φ is called a frame if there exist constants 0 < A ≤ B <∞ such that for all x ∈ H

(1.1) A‖x‖2 ≤
m∑
i=1

|〈x, fi〉|2 ≤ B‖x‖2.

The constants A and B are called the upper and lower frame bounds, respectively. When A = B, the frame

is said to be tight. A frame with all vectors having the same norm is called an equal norm frame or a unit

norm frame (if the norms are all equal to one). For a finite dimensional Hilbert space, a frame is the same

as a spanning set. Let F be the m × d matrix whose kth row is f∗k . F is called the analysis operator. The

d × d matrix S = F ∗F is called the frame operator. It is self-adjoint, positive definite, and invertible. For

a tight frame, S is a multiple of the identity, i.e., S equals AI, where I is the identity. Under the above

setting, the following result will be used [1].

Theorem 1.1. (a) The smallest and largest eigenvalues of S are the optimal lower and upper frame bounds,

respectively.

(b) Let {λk}dk=1 denote the eigenvalues of S, including repetitions. Then

d∑
k=1

λk =

m∑
i=1

‖fi‖2.

Due to Theorem 1.1 (b), if {fi}mi=1 is a unit norm tight frame (UNTF) then its frame bound is A = m
d . The

ratio of the frame size to the dimension, i.e., md is called the redundancy of the frame. The m×m matrix of

inner products, FF ∗ =: G, is called the Gram matrix of Φ. The rank of G is d, and the nonzero eigenvalues

of G are the same as those of S. Let x be a signal that is a vector in H. If S is the frame operator then

(1.2) x =

m∑
i=1

〈x, fi〉S−1fi =

m∑
i=1

〈x, S−1fi〉fi.

The set {S−1fi}mi=1 is also a frame for H. It is called the canonical dual frame of Φ and denoted by {f̃i}mi=1.

In the deterministic setting, for a deterministic signal with deterministic frames, it was shown in [5] that

equiangular tight frames are optimal for multiple erasures. The presence of random noise in the frame

coefficients {〈x, fi〉} was considered in [4] where it was shown that unit norm tight frames minimize the

average and maximum mean-squared error (MSE) over a single erasure. In the realm of fusion frames,

estimating a random signal and determining properties of robust fusion frames, in the presence of random

noise and subspace erasures, was done in [7].
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As already stated, the purpose of this work is to study frames and signal reconstruction in the presence of

erasures with a special focus on stochastic models for the erasure, signal, and also the frame. Suppose that

one of the frame coefficients 〈x, fk〉 is lost at random which is the same as one of the frame vectors fk being

deleted. Denote the remaining set by Φk := Φ \ {fk}. If Φk is still a frame for H then exact reconstruction

of x is possible from the remaining coefficients by using the frame operator Sk of Φk :

x =

m∑
i 6=k

〈x, fi〉S−1
k fi.

However, the frame properties of the random subframe Φk will be affected by the deletion, and this is studied

in Section 2. When the deletion of a vector leaves behind a set that is no longer a frame then the standard

choice is to set the lost coefficient to zero, however, this is not necessarily the best choice. In this case,

conditions that determine the choice of a replacement for the erased coefficient so that the error can be

minimized is discussed in Section 3. Estimating a random signal x from noisy frame coefficients when there

is an erasure is studied in Section 4. Conditions on the frame that would minimize the mean-squared error

(MSE) are established there. This was done in [7] using fusion frames when the covariance of x is of the form

σ2
xI whereas here a general covariance matrix is considered using traditional frames. For minimizing the

MSE, this leads to some geometric connections between the signal and the frame vectors, see Theorem 4.3.

Further, Section 4 also addresses the situation where the erasure is assumed to have some a priori distribution

and minimizing the MSE in this case gives rise to conditions on the norms of the frame vectors based on

the probability distribution of the location of the erasure, see Theorem 4.4. This was not done in [7] or

elsewhere. Finally, in Section 5, the use of stochastic frames in estimating a random signal is studied, and it

is shown how using stochastic frames can lead to more flexibility in design and greater control on the MSE,

see Remark 5.2. The use of stochastic frames in signal reconstruction has been vastly untouched so far.

2. Changes in frame properties after deleting a frame vector

Consider the situation where a vector fk is deleted from a frame Φ and the remaining set Φk is still a

frame. This may cause some changes in the structure of the resulting frame, including changes in the frame

bounds and the condition number of the frame. Such changes may effect the stability of the reconstruction

in (1.2).

2.1. Changes in frame bounds after deleting a frame vector. The results below show how the frame

bounds of Φk are related to those of Φ. All results are independent of the location k. The results can thus

be interpreted as being for random subframes of Φ of size m− 1. The following is a slight generalization of

Theorem 4.1 in [4].
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Theorem 2.1. (i) Let {fi}mi=1 in H, m > d, be a unit norm frame with bounds 1 < A ≤ B < ∞. For any

k, {fi}i 6=k is a frame with a lower bound A1 = A− 1 and an upper bound B1 = B.

(ii) If {fi}mi=1 is a unit norm tight frame then the bounds A1 and B1 mentioned in part (i) are optimal, and

{fi}i 6=k is non-tight.

Proof. (i) By the Cauchy-Schwarz Inequality, using the fact that the frame vectors are unit norm,

|〈x, fk〉| ≤ ‖x‖‖fk‖ = ‖x‖.

Therefore, from (1.1),

(2.1) (A− 1)‖x‖2 ≤
∑
i 6=k

|〈x, fi〉|2 ≤ B‖x‖2.

(ii) If the starting frame is unit norm and tight then A = B = m
d . For all x ∈ H

m

d
‖x‖2 =

m∑
i=1

|〈x, fi〉|2.

When x = fk, equality is attained on the left inequality in (2.1). For x such that 〈x, fk〉 = 0, equality

is attained on the right inequality in (2.1). Thus the optimal lower and upper bounds are m
d − 1 and m

d ,

respectively. Since these bounds are not equal to each other, {fi}i 6=k is non-tight. �

When the number of erasures is more that one, the following is obtained in a similar manner.

Theorem 2.2 ([1], Proposition 1.5.6). For e ≥ 1 erasures, the remaining vectors form a frame if the starting

frame {fi} is unit norm with lower frame bound A > e. After e erasures, the lower frame bound of a unit

norm frame can decrease by at most e.

Theorem 2.3. Let {fi}mi=1 be a tight frame in H, not necessarily unit norm, with bound equal to A. If the

vector fk is removed then the resulting set Φk is no longer a tight frame. Further, Φk is a frame if and only

if ‖fk‖2 < A.

Proof. Due to tightness,

A‖x‖2 =

m∑
i=1

|〈x, fi〉|2, ∀x ∈ H.

Suppose that the kth vector is removed for some 1 ≤ k ≤ m. By the Cauchy-Schwarz Inequality and (1.1),

(A− ‖fk‖2)‖x‖2 ≤
∑
i 6=k

|〈x, fi〉|2 ≤ A‖x‖2.

As done in the proof of Theorem 2.1 (ii), setting x = fk shows that A− ‖fk‖2 is the optimal lower bound,

and taking x such that 〈x, fk〉 = 0 shows that A is the optimal upper bound of Φk. Since fk is not zero, the
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lower and upper bounds are not equal, and Φk is not tight. Further, since A − ‖fk‖2 is the optimal lower

bound, this implies that Φk is a frame if and only if ‖fk‖2 < A. �

Theorem 2.4. Let Φ = {fi}mi=1 be a frame for H that is not necessarily unit norm. It is not possible for

every subset of m− 1 vectors of Φ to be a tight frame.a

Proof. Let Fk be the analysis operator of Φk. The frame operator of Φk can then be written as

F ∗kFk = F ∗F − fkf∗k .

Suppose that every subset of m− 1 vectors of Φ is a tight frame. Then there exist constants λ1, λ2, . . . , λm

such that for k = 1, . . . ,m,

F ∗F − fkf∗k = λkI.

Adding over all k, gives

F ∗F =

∑m
k=1 λk
m− 1

I

which implies that Φ is tight. However, in that case, by Theorem 2.3, if a vector is removed from Φ then the

resulting frame is not tight. This contradicts the assumption that every subset of m− 1 vectors is tight. �

2.2. Change in the condition number of a frame after deleting a vector. The condition number b of

a tight frame is 1 making tight frames highly desirable as they offer numerical stability in the reconstruction

formula (1.2) which involves inverting the frame operator. Thus, changes in the condition number with the

deletion of a frame vector is of interest. This involves studying the eigenvalue properties of the principal

submatrices of the Gram matrix of Φ.

Proposition 2.5. Let Φ be a unit norm tight frame (UNTF) of m vectors in H with m > d. Then, regardless

of the location, the condition number always increases after a single erasure.

Proof. Recall that for a UNTF the frame bound is A = m
d , and the condition number is 1. By Theorem 2.1,

the condition number of Φk is

(2.2) ck =
A

A− 1
= 1 +

1

A− 1
= 1 +

1
m
d − 1

> 1.

�

Remark 2.6. From (2.2), it can be seen that higher the redundancy (md ) of the starting UNTF Φ, the closer

the condition number of Φk is to 1.

aThis result was proved in [4] with the assumption that the starting frame is unit norm.
bBy condition number of a frame is meant the ratio of the maximum and the minimum eigenvalue of the frame operator, i.e.,

the ratio of the optimal upper and lower frame bounds.
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Using the following Theorem 2.7 [6] one can construct a frame such that the deletion of a certain frame

vector leaves the condition number unchanged (see Remark 2.8 and Example 2.9).

Theorem 2.7. [6] Let m be a given positive integer, and let {µi : i = 1, 2, . . . ,m} and {λi : i = 1, 2, . . . ,m+1}

be two given sequences of real numbers such that

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µm−1 ≤ λm ≤ µm ≤ λm+1.

Let Λ = diag(µ1, µ2, . . . , µm). There exists a real number a and a real vector y ∈ Rm such that {λi : i =

1, 2, . . . ,m+ 1} is the set of eigenvalues of the real symmetric matrix

G ≡
[

Λ y
yT a

]
.

Remark 2.8. The proof of Theorem 2.7 [6] provides a way to construct the vector y and find the number

a. G can be thought of as the Gram matrix of the starting frame Φ with m+ 1 frame vectors. When the last

row and column of G are deleted then the diagonal matrix Λ is the Gram matrix of the frame Φm+1. With

an appropriate choice of the µs and the λs, Φm+1 has the same frame bounds as Φ thus leaving the condition

number unchanged after erasure at location m+ 1. The diagonal elements of G are the lengths of the frame

vectors and so in this process one does not necessarily construct a unit norm frame. The sequence {λi} must

be strictly positive so that there are no zero vectors. Since Λ is diagonal, Φm+1 is an orthogonal basis. It is

thus implied that this is applicable for a starting frame of d + 1 vectors in a d-dimensional space such that

removing the last vector leaves behind an orthogonal basis. An example demonstrating this is given next.

Example 2.9. Suppose that m = 4, and {λi} = {0, 1, 3/2, 3/2}. Thus one is considering a starting frame Φ

of four vectors in R3. Let {µi} = {1, 5/4, 3/2}. Using Theorem 2.7, one can obtain the matrix G as

G =


1 0 0 0

0 5/4 0
√

5/4
0 0 3/2 0

0
√

5/4 0 1/4

 .
The frame vectors of Φ have lengths 1, 5/4, 3/2, and 1/4, and so it is not unit norm. Φ has frame bounds

A = 1 and B = 3/2, and so it is not tight. After deleting the last row and column of G one is left with

the Gram matrix of an orthogonal basis of R3. The frame bounds and hence the condition number of this

basis (frame) are the same as those of Φ. However, any other principal submatrix of G may not give the

same result. For example, deleting the first row and column will give the Gram matrix of a tight frame for

R2 (not R3), whereas, deleting the second row and column will give an orthogonal basis of R3 with frame

bounds 1/4 and 3/2.
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Let Gk denote the kth principal submatrix of G, i.e., Gk is the Gram matrix of Φk. Arrange the eigenvalues

of G and Gk in increasing order. Let λj denote the jth eigenvalue of G and let µk,j denote the jth eigenvalue

of Gk. The eigenvalues of G and those of the principal submatrices satisfy [6]

(2.3) max
1≤k≤m

µk,j ≥
m− j
m

λ1 +
j

m
λj+1, j = 1, . . . ,m,

and

(2.4) min
1≤k≤m

µk,j ≤
m− j
m

λj +
j

m
λm, j = 1, . . . ,m.

If Φk is a frame for H, then Gk has rank d. Define the best case condition number for any Φk as

min
1≤k≤m

µk,m−1

max
1≤k≤m

µk,m−d
,

and the worst case condition number as
max

1≤k≤m
µk,m−1

min
1≤k≤m

µk,m−d
.

With these definitions, Proposition 2.10 below shows that frames with higher redundancy perform better.

Proposition 2.10. Let c be the condition number of the starting frame Φ. For any k, if Φk is a frame for

H, then the best case condition number of Φk satisfies

c ≤
min

1≤k≤m
µk,m−1

max
1≤k≤m

µk,m−d
≤ c

(
1 +

1
m
d − 1

)

and the worst case condition number satisfies

max
1≤k≤m

µk,m−1

min
1≤k≤m

µk,m−d
≥ 1 +

1− 1
d

m
d − 1

.

Proof. Since the rank of G is d, the eigenvalues of G can be written as

0 = λ1 = · · · = λm−d < λm−d+1 ≤ · · · ≤ λm.

The condition number of Φ is

c =
λm

λm−d+1
.

If Φk is a frame for H, then Gk also has d nonzero eigenvalues. By the interlacing theorem [6],

(2.5) 0 = λ1 = µk,1 = λ2 = · · · = µk,m−d−1 = λm−d < µk,m−d ≤ λm−d+1 ≤ · · · ≤ λm−1 ≤ µk,m−1 ≤ λm.
7
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Substituting m− 1 and m− d for j in (2.4) and (2.3), respectively, gives

(2.6) min
1≤k≤m

µk,m−1 ≤
1

m
λm−1 +

m− 1

m
λm, and max

1≤k≤m
µk,m−d ≥

d

m
λ1 +

m− d
m

λm−d+1.

From (2.5) and (2.6)

c =
λm−1

λm−d+1
≤

min
1≤k≤m

µk,m−1

max
1≤k≤m

µk,m−d
≤ λm−1 + (m− 1)λm

(m− d)λm−d+1
≤ m

m− d
c = c

(
1 +

1
m
d − 1

)

which gives the bounds for the best case condition number for any Φk.

Next substitute m− 1 and m− d for j in (2.3) and (2.4) to get

max
1≤k≤m

µk,m−1 − min
1≤k≤m

µk,m−d ≥
λ1

m
+
d− 1

m
λm −

d

m
λm−d =

d− 1

m
λm (since λ1 = λm−d = 0),

or,

max
1≤k≤m

µk,m−1

min
1≤k≤m

µk,m−d
≥ 1 +

d− 1

m

λm
min

1≤k≤m
µk,m−d

≥ 1 +
d− 1

m
λm

1
m−d
m λm

= 1 +
1− 1

d
m
d − 1

where the last inequality is obtained by using j = m− d in (2.4), and the fact that λm−d = 0. �

3. When erasure results in a set that is no longer a frame

If Φk = {fi}i6=k is not a frame for H then exact reconstruction of x may not be possible when the kth

frame coefficient is erased. The erased coefficient 〈x, fk〉 can be replaced by some linear combination of the

known coefficients at the reconstruction step. One wants to pick scalars {αj} in such a way that when the

linear combination
∑
i6=k αi〈x, fi〉 is used in place of 〈x, fk〉 then the reconstruction x̂k is closest to x in some

sense. Here x̂k is calculated as

(3.1) x̂k =
∑
i 6=k

〈x, fi〉S−1fi +

∑
i 6=k

αi〈x, fi〉

S−1fk =
∑
i6=k

〈x, fi〉f̃i + 〈x,
∑
i 6=k

αifi〉f̃k

Using (1.2) and Cauchy-Schwarz, the relative error can be bounded by

(3.2)
‖x− x̂k‖
‖x‖

≤ ‖fk −
∑
j 6=k

αjfj‖‖f̃k‖

To minimize the `2-norm of the upper bound in (3.2), one can choose the αjs such that
∑
j 6=k αjfj is the

orthogonal projection, Proj(fk), of fk on W = span{fj}j 6=k. In other words, the deleted vector fk is replaced

by Proj(fk).

Proposition 3.1. Suppose that when the kth frame coefficient is erased or fk is deleted, Proj(fk) is used in

place of fk. Then the upper bound of the average relative error is minimized in `2-norm when the starting

frame is tight. Further, the average relative error is lower for frames with higher redundancy.
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Proof. By the Pythagorean Identity

‖fk‖2 = ‖fk − Proj(fk)‖2 + ‖Proj(fk)‖2 ≥ ‖fk − Proj(fk)‖2.

Using this in (3.2) gives

‖x− x̂k‖
‖x‖

≤ ‖fk − Proj(fk)‖‖f̃k‖ ≤ ‖fk‖‖f̃k‖ ≤
1

A
‖fk‖2.

The average relative error is

1

m

m∑
k=1

‖x− x̂k‖
‖x‖

≤ 1

m

1

A

m∑
k=1

‖fk‖2 ≤
1

m

1

A

d∑
i=1

λi(S) ≤ d

m

1

A
λmax(S) =

d

m

B

A
.

The quantity d
m
B
A is inversely proportional to m

d , and is minimized when B = A, i.e., when the frame is

tight. �

Often the deleted frame vector is replaced by zero in which case the reconstruction based on the remaining

coefficients is

x̂ =
∑
i 6=k

〈x, fi〉f̃i.

When the deleted frame vector is replaced by zero, the upper bound of the average relative error is minimized

under the same conditions of Proposition 3.1.

Depending on the signal and the deleted vector, one has to choose a replacement for the erased coefficient.

The following example shows that in some cases setting the lost coefficient to zero is better than setting it

to 〈x,Projfk〉 and vice versa, while at times, depending upon the signal, it makes no difference. At other

times, neither is the best choice.

Example 3.2. Consider the frame for R3 given by

f1 =

1
0
0

 , f2 =

0
1
0

 , f3 =

1
1
1

 , f4 =

1
1
0

 .
The canonical dual frame is

f̃1 =

 2/3
−1/3
−1/3

 , f̃2 =

−1/3
2/3
−1/3

 , f̃3 =

0
0
1

 , f̃4 =

 1/3
1/3
−2/3

 .
Remove f3. The set {f1, f2, f4} is no longer a frame for R3. The orthogonal projection of f3 onto span{f1, f2, f4}

is Projf3 = (1, 1, 0). The reconstructions of x obtained from replacing the erased coefficient 〈x, f3〉 by zero

and by 〈x,Projf3〉 are compared below for several different choices of x.

(a) Take x = (1,−1, 0). Then 〈x, f3〉 = 〈x,Projf3〉 = 0. Replacing 〈x, f3〉 either by zero or by 〈x,Projf3〉

gives exact reconstruction.
9
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(b) Let x = (1, 0, 2). First replace 〈x, f3〉 by zero. The reconstruction is

x̂ = 〈x, f1〉f̃1 + 〈x, f2〉f̃2 + 〈x, f4〉f̃4 =

 1
0
−1

 6= x.

The `2-norm of the error is ‖x− x̂‖ = 3. Next replace 〈x, f3〉 by 〈x,Projf3〉. Then

x̂ = 〈x, f1〉f̃1 + 〈x, f2〉f̃2 + 〈x, f4〉f̃4 + 〈x,Projf3〉f̃3 =

1
0
0

 6= x.

The norm of the error is ‖x− x̂‖ = 2 which is lower than when the lost coefficient is set to zero. However,

neither zero nor the orthogonal projection of the deleted vector is the best choice. Exact reconstruction

can be obtained by replacing 〈x, f3〉 by 〈x, 2f1 + cf2 + f4〉, where c is any scalar.

(c) Lastly, take x = (1, 0,−2). As before, first replace the lost coefficient 〈x, f3〉 by zero. Then x̂ = (1, 0,−1),

and ‖x− x̂‖ = 1. Replacing the lost coefficient by 〈x,Projf3〉 gives x̂ = (1, 0, 0), and ‖x− x̂‖ = 2 which

is higher than when the lost coefficient is set to zero.

Proposition 3.3 and Corollary 3.4 below give a structure on the frame with respect to the signal that

guarantees exact reconstruction for both the zero replacement and when the deleted vector is replaced by

its orthogonal projection Projfk.

Proposition 3.3. Let {ei}di=1 be an orthonormal basis (ONB) of H. Suppose that {ei}di=1 ⊆ {fi}mi=1, the

deleted frame vector is fk = en for some 1 ≤ n ≤ d, and that {fi}i 6=k is not a frame for H. Then fk belongs

to span{fi}⊥i 6=k and span{ei}i 6=n = span{fj}j 6=k.

Proof. Since {fi}i 6=k is not a frame for H, there exists a nonzero v ∈ H such that

∑
i6=k

|〈v, fi〉|2 = 0

i.e., v is orthogonal to each fi for i 6= k. In other words, v belongs to span{fi}⊥i 6=k. Since {ei}di=1 ⊆ {fi}mi=1,

this further implies that v is orthogonal to each ei, i 6= n, i.e., v = cen for some nonzero scalar c. Thus

en = fk belongs to span{fi}⊥i 6=k.

Since {ei}di=1 is an ONB of H, the dimension of span{ei}i6=n is d − 1. Also, since {fi}i 6=k is no longer a

frame but {fi}mi=1 is, the dimension of span{fi}i6=k is also d− 1. Since span{ei}i 6=n ⊆ span{fi}i 6=k and both

have the same dimension, therefore, span{ei}i 6=n = span{fi}i 6=k. �

Corollary 3.4. Under the assumptions of Proposition 3.3, let x ∈ span{ej}j 6=n. Then exact reconstruction

is obtained both when the lost coefficient 〈x, fk〉 is set to zero and when 〈x, fk〉 is replaced by 〈x,Projfk〉 .
10
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Proof. 〈x, en〉 = 〈x, fk〉 = 0, and note that {ej}j 6=n is an ONB for span{ej}j 6=n, i.e., {ej}j 6=n is an ONB for

span{fj}j 6=k. Therefore, Projfk = 0, and 〈x,Projfk〉 = 0. �

In what follows, when the lost coefficient 〈x, fk〉 is replaced by zero denote the reconstruction by x̂0. If 〈x, fk〉

is replaced by
∑
j 6=k αj〈x, fj〉 denote the reconstruction by x̂k as given in (3.1).

Theorem 3.5. Suppose that {fi}mi=1 is a UNTF with bound A. When the coefficient 〈x, fk〉 is lost, the

average squared error is lower if it is replaced by
∑
j 6=k αj〈x, fj〉 than when replaced by zero, provided that

the scalars αjs can be picked such that

(3.3)

m∑
k=1

‖fk −
∑
j 6=k

αjfj‖2 ≤ A.

Proof. If the lost coefficient is replaced by zero, the norm of the error is

‖x− x̂0‖ =
1

A
|〈x, fk〉|‖fk‖ =

1

A
|〈x, fk〉|.

Otherwise, the error is

‖x− x̂k‖ =
1

A
|〈x, fk −

∑
j 6=k

αjfj〉|‖fk‖ =
1

A
|〈x, fk −

∑
j 6=k

αjfj〉|

The average squared error over all k for x̂0 is

1

m

1

A2

m∑
k=1

|〈x, fk〉|2 =
1

m

1

A2
A‖x‖2 =

‖x‖2

mA
.

For x̂k, the average squared error over all k is

1

m

1

A2

m∑
k=1

|〈x, fk −
∑
j 6=k

αjfj〉|2 ≤
‖x‖2

mA2

m∑
k=1

‖fk −
∑
j 6=k

αjfj‖2

where the bound is obtained by using the Cauchy Schwarz Inequality. Choosing the αs such that

‖x‖2

mA2

m∑
k=1

‖fk −
∑
j 6=k

αjfj‖2 ≤
‖x‖2

mA

simplifies to (3.3). �

4. Reconstructing random signals from noisy measurements with erasure

Let x be a random vector in H with mean zero and covariance matrix E[xxT ] = Rxx. In this section, the

goal is to reconstruct x from noisy measurements with a real frame {fi}mi=1. This has been studied in the

realm of fusion frames [7] where the authors have shown that by using a linear minimum mean-squared error

(LMMSE) estimator the mean-squared error (MSE) is minimum when the fusion frame is tight. In addition,
11
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the authors have shown that in the presence of a subspace erasure, maximum robustness is achieved with a

tight fusion frame having subspaces with the same dimension. In [7], the analysis is limited to the case where

the signal covariance is of the form Rxx = σ2
xI, and a white noise vector with covariance σ2

nI. Here a general

Rxx as well as noise vector is considered. Further, when considering a single erasure, a priori distribution is

assumed on the location of the erasure, and this was not considered in [7]. The notation used below is the

same as in [7].

Suppose that the frame coefficients of x are corrupted by noise, i.e., one has to reconstruct x from

zi = 〈x, fi〉+ ni, i = 1, . . . ,m,

where each ni has mean zero and the noise vector n = (n1, n2, . . . , nm)T has covariance matrix Σ. Suppose

that x and n are uncorrelated. If z = (z1, z2, . . . , zm)T then

z = Fx+ n.

Denote the covariance matrix of z by Rzz and that between x and z by Rxz. The goal is to estimate x from

z. The LMMSE filter or the Wiener filter is K = RxzR
−1
zz . Following [8, 7], the LMMSE estimator of x is

x̂ = Kz.

Using the fact that the error x−Kz is orthogonal to Kz [8], the covariance of the error is

Ree = E[(x−Kz)(x−Kz)T ] = Rxx −RxzR−1
zz Rzx = Rxx −RxxFT (FRxxF

T + Σ)−1FRxx

= (R−1
xx + FTΣ−1F )−1(4.1)

where the last step uses the Sherman-Morrison-Woodbury matrix inversion formula [3, p. 50].

Theorem 4.1. When estimating a zero mean random signal x from noisy measurements with the LMMSE

estimator:

(i) Among all frames with m vectors, the MSE is minimized when the frame is tight and when the covariance

of the noise is of the form σ2
nI.

(ii) When Σ = σ2
nI, among unit norm tight frames (UNTFs), higher the redundancy of the frame, lower the

MSE.

Proof. (i) Since Σ is a Hermitian matrix, there is a unitary matrix U and a diagonal matrix D such that

Σ = UTDU.
12
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Then from (4.1)

Ree = E[(x−Kz)(x−Kz)T ] = (R−1
xx + FTUTD−1/2D−1/2UF )−1.

Let P = D−1/2UF. Then

Ree = (R−1
xx + PTP )−1.

The fact that U is unitary leads to

A‖x‖2 ≤ ‖UFx‖2 = ‖Fx‖2 =

m∑
i=1

|〈x, fi〉|2 ≤ B‖x‖2.

Let λmax and λmin denote the maximum and minimum eigenvalues of D or Σ. Then

1

λmax
A‖x‖2 ≤ ‖D−1/2UFx‖2 = ‖Px‖2 ≤ 1

λmin
B‖x‖2.

Note that the rows of P form a frame with bounds A
λmax

and B
λmin

. Thus the eigenvalues of its frame operator

PTP lie in [ A
λmax

, B
λmin

]. Denote the eigenvalues of Rxx by 0 < µ1 ≤ µ2 ≤ . . . ≤ µd and those of R−1
xx + PTP

by φ1 ≥ φ2 ≥ . . . ≥ φd > 0. Therefore,

(4.2)
∑
i

1
1
µi

+ B
λmin

≤
∑
i

1

φi
≤
∑
i

1
1
µi

+ A
λmax

.

The MSE equals the trace of Ree which is
∑
i

1
φi
, and attains the lower bound when

B

λmin
=

A

λmax

or,
B

A
=
λmin

λmax
.(4.3)

The left side of (4.3) is the condition number of the frame operator whereas the right side is the inverse of

the condition number of Σ. The two can be equal if and only if they are both equal to 1 which means that

the frame is tight and the covariance of the noise is a constant multiple of the identity, say σ2
nI.

(ii) For a UNTF

A =
1

d

m∑
i=1

‖fi‖2 =
m

d

Additionally, if Σ = σ2
nI, then from (4.2)

(4.4) MSE =

d∑
i=1

1
1
µi

+ A
σ2
n

=

d∑
i=1

1
1
µi

+ 1
σ2
n

m
d

The expression in (4.4) suggests that higher the redundancy m
d , the lower the MSE. �

4.1. Erasures. Suppose that the kth frame coefficient is erased. Let Ek be the m × m diagonal matrix

whose kth diagonal entry is 1 and every other entry is zero. Where the location of the erasure is irrelevant,
13
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the subscript k is dropped and just E is written. The measurements in the presence of noise would be

z̃ = (I − E)z.

As done in [7], the estimate of a random signal x is taken to be

x̃ = Kz̃

where K = RxzR
−1
zz is the no erasure LMMSE filter used above. From [7], the covariance of the error is

R̃ee = E[(x−Kz̃)(x−Kz̃)T] = Rxx −RxzR−1
zz Rzx +RxzR

−1
zz ERzzE

TR−1
zz Rzx

= Ree +Ree

where Ree = Rxx −RxzR−1
zz Rzx is the no erasure covariance and

(4.5) Ree = RxzR
−1
zz ERzzE

TR−1
zz Rzx

is the extra covariance due to the erasure. The mean-squared error is

(4.6) MSE = tr[R̃ee] = tr[Ree] + tr[Ree].

Remark 4.2. The use of the full covariance matrix Rzz and the no erasure LMMSE filter K in the case of

an erasure was justified in [7] as being done to avoid recalculating the LMMSE filter for every erasure and

hence reduce computation costs. If one wishes for better accuracy, then, for erasure at location k, one would

instead use K̂ = RxzkR
−1
zkzk

where zk = (I − Ek)z and Rxzk , Rzkzk are the respective covariance matrices.

However, due to the nature of the matrix Ek, Rzkzk is not invertible. Therefore, to calculate K̂, one can use

the pseudo inverse of Rzkzk .

In the following, tight frames are considered because it is known from Theorem 4.1 that these minimize the

no erasure MSE, tr[Ree], in (4.6). In the same spirit, it is also assumed that the noise has covariance matrix

of the form σ2
nI.

Theorem 4.3. (i) Let x be a d-dimensional random signal with mean zero and covariance Rxx, and suppose

that the kth coefficient is erased. Consider a noise vector with covariance σ2
nI. The MSE is minimized when

the frame is tight and the frame vector corresponding to the location of loss, i.e. fk, is an eigenvector of Rxx

corresponding to its minimum eigenvalue.

(ii) Let the covariance of x be Rxx = σ2
xI. Among all frames with a given frame bound A, the average MSE

taken over all erasures is minimized for an equal norm tight frame. Further, the redundancy of the frame

must be greater than 2, and the common norm of the frame vectors must be less than or equal to
σ2
n

σ2
x(md −2) .

14
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Proof. (i) From Theorem 4.1 it is known that tight frames minimize the no erasure MSE, tr[Ree], in (4.6).

Assume a tight frame with bound equal to A. Since Rxx is a Hermitian matrix, there exists a unitary matrix

Q, and a diagonal matrix D = diag(d1, . . . , dm) consisting of the eigenvalues of Rxx such that

Rxx = QDQT.

Then, in this case,

Rxz = RxxF
T = QDQTFT,(4.7)

Rzz = FRxxF
T + σ2

nI = BBT + σ2
nI, where B := FQD1/2,(4.8)

R−1
zz =

1

σ2
n

I − 1

σ4
n

B

(
I +

1

σ2
n

BTB

)−1

BT =
1

σ2
n

I − 1

σ4
n

B

(
I +

A

σ2
n

D

)−1

BT(4.9)

where (4.9) is obtained by using the definition of B in (4.8) and the fact that the frame is tight. The

additional MSE due to erasure, Ree, can be calculated from (4.5) by using the matrix inversion formula [3,

p. 50].

Ree =
1

σ4
n

QDQTFT

(
I − 1

σ2
n

B

(
I +

A

σ2
n

D

)−1

BT

)
Ek
(
BBT + σ2

nI
)
Ek

(
I − 1

σ2
n

B

(
I +

A

σ2
n

D

)−1

BT

)
FQDQT

=
1

σ4
n

QD

(
I − diag

(
Adi

σ2
n +Adi

))
QTFTEk

(
FRxxF

T + σ2
nI
)
EkFQ

(
I − diag

(
Adi

σ2
n +Adi

))
DQT.

The above can be simplified by noting that

I − diag

(
Adi

σ2
n +Adi

)
= diag

(
σ2
n

σ2
n +Adi

)
.

Denoting ∆ := diag
(

di
σ2
n+Adi

)
, and using the cyclic property of the trace

tr[Ree] = tr[QTFTEk(FRxxF
T + σ2

nI)EkFQ∆2]

= tr[∆QTfkf
∗
kQDQ

Tfkf
∗
kQ∆ + σ2

n∆QTfkf
∗
kQ∆].(4.10)

Let u1, . . . , um be a set of orthonormal eigenvectors of Rxx corresponding to the eigenvalues d1, . . . , dm,

respectively. These eigenvectors form the columns of the matrix Q. For convenience take A = 1. Then the

second term in (4.10) is

(4.11)

tr[σ2
n∆QTfkf

∗
kQ∆] = σ2

n

m∑
j=1

1(
σ2
n

dj
+ 1
)2 |〈uj , fk〉|

2 ≥ σ2
n(

σ2
n

dmin
+ 1
)2

m∑
j=1

|〈uj , fk〉|2 =
σ2
n(

σ2
n

dmin
+ 1
)2 ‖fk‖

2.

15
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Suppose that fk is an eigenvector of Rxx corresponding to dmin. Let S ⊆ {1, 2, . . . ,m} be such that if i ∈ S

then ui is an eigenvector of dmin. There exist scalars {αi}i∈S such that

fk =
∑
i∈S

αiui, or, ‖fk‖2 =
∑
i∈S
|αi|2.

Then

σ2
n

m∑
j=1

1(
σ2
n

dj
+ 1
)2 |〈uj , fk〉|

2
= σ2

n

1(
σ2
n

dmin
+ 1
)2

∑
i∈S
|αi|2 = σ2

n

1(
σ2
n

dmin
+ 1
)2 ‖fk‖

2.

This implies that the lower bound in (4.11) is attained or in other words, the second term in (4.10) is

minimized, if fk is an eigenvector of Rxx corresponding to its minimum eigenvalue.

The first term in (4.10) is

tr[∆QTfkf
∗
kQDQ

Tfkf
∗
kQ∆] =

m∑
i=1

di |〈ui, fk〉|2
m∑
j=1

d2
j

(σ2
n + dj)2

|〈uj , fk〉|2 ≥
d3

min

(σ2
n + dmin)2

‖fk‖4.

Once again, the lower bound is attained if fk is an eigenvector of Rxx corresponding to its minimum eigen-

value.

(ii) Due to Theorem 4.1, a tight frame minimizes tr[Ree], and it is assumed that the noise n has covariance

σ2
nI. If Rxx = σ2

xI, then

Rxz = σ2
xF

T, Rzz = σ2
xFF

T + σ2
nI,

and from (4.5)

Ree = σ4
xF

T(σ2
xFF

T + σ2
nI)−1E(σ2

xFF
T + σ2

nI)ET(σ2
xFF

T + σ2
nI)−1F.

By using the matrix inversion formula [3, p. 50],

Ree = σ4
xF

T

(
1

σ2
n

I − σ2
x

σ2
n(σ2

n +Aσ2
x)
FFT

)
E(σ2

xFF
T + σ2

nI)ET

(
1

σ2
n

I − σ2
x

σ2
n(σ2

n +Aσ2
x)
FFT

)
F,

tr[Ree] =
σ4
x

(σ2
n +Aσ2

x)2
tr[FTE(σ2

xFF
T + σ2

nI)ETF ] =
σ4
x

(σ2
n +Aσ2

x)2
tr[σ2

x(FTEF )2 + σ2
nF

TEF ]

=
σ4
x

(σ2
n +Aσ2

x)2
tr[σ2

x(fkf
∗
k )2 + σ2

nfkf
∗
k ] =

σ4
x

(σ2
n +Aσ2

x)2
(σ2
x‖fk‖4 + σ2

n‖fk‖2).

Let α =
σ2
x

σ2
n+Aσ2

x
. Averaging over all erasures, and recalling that for a tight frame

∑m
i=1 ‖fi‖2 = Ad gives

avg(tr[Ree]) =
1

m
α2

(
σ2
x

m∑
k=1

‖fk‖4 + σ2
nAd

)
≥ α2

(
σ2
x min

1≤k≤m
‖fk‖4 + σ2

nA
d

m

)
.

Equality is attained if every frame vector fk has the same norm. Thus, putting the conditions for tr[Ree]

and tr[Ree] together, it is implied that the average MSE is minimized for an equal norm tight frame.
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Let {fk}mk=1 be an equal norm tight frame such that for all k, ‖fk‖2 = L, where L is some constant. From

Theorem 1.1 (b), the frame bound A is

A = mL/d.

For a fixed L, the minimum value of tr[Ree] is

µ(L) := tr[Ree] =
σ4
x

(σ2
n +

mLσ2
x

d )2

(
σ2
xL

2 + σ2
nL
)
.

As a function of L, µ(L) attains maxima at L =
σ2
n

σ2
x(md −2) . This means that the common norm of the frame

vectors must be less than or equal to
σ2
n

σ2
x(md −2) , and that the redundancy m

d must be greater than 2. �

4.2. A priori distribution of the erasure. Suppose that the kth frame coefficient is erased according to

some known probability distribution {pi}mi=1. That is, if a single erasure occurs at location k then

Probability[k = i] = pi, i = 1, . . . ,m,

and this distribution is independent of the signal x. The LMMSE estimator when the kth coefficient is lost

is denoted by x̂k. When the location of the erasure is unknown, denote the estimator of x by x̂ dropping the

subscript k. The mean-squared error with x̂ is

MSE = E[(x− x̂)T(x− x̂)] =

m∑
k=1

E[(x− x̂k)T(x− x̂k)] pk =

m∑
k=1

MSEk pk

where MSEk is the mean-squared error with x̂k. As in (4.6)

MSEk = tr[Ree + (Ree)k]

where Ree denotes the no erasure covariance, and (Ree)k = RxzR
−1
zz EkRzzEkR

−1
zz Rzx denotes the extra

covariance due to erasure at location k. Thus

MSE =

m∑
k=1

tr
[
Ree + (Ree)k

]
pk = tr[Ree] +

m∑
k=1

tr
[
(Ree)k

]
pk.

Theorem 4.4. Let x be a zero mean random signal of dimension d. With a frame {fk}mk=1, suppose that

the coefficients are erased according to some probability distribution {pk}mk=1.

(i) Suppose that the covariance of x is σ2
xI. Then:

(a) The MSE with a single erasure is minimized with an equal norm tight frame when the erasure

follows a uniform distribution.
17
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(b) For a given probability distribution, considering tight frames, the MSE is minimized when for each

j = 1, . . . ,m, ‖fj‖2pj is a constant. This implies that a frame vector having a higher probability of

getting erased must have smaller norm.

(ii) When the covariance of x is a general matrix Rxx then the MSE is minimized when each frame vector

is an eigenvector of Rxx corresponding to its minimum eigenvalue.

Proof. (i) (a) Recall

MSE = tr[Ree] +

m∑
k=1

tr
[
(Ree)k

]
pk.

It is known that a tight frame will minimize tr[Ree]. Let the frame bound be A = 1. From

calculations done in the proof of Theorem 4.3 (ii)

tr[(Ree)k] =
σ4
x

(σ2
n + σ2

x)2

(
σ2
x‖fk‖4 + σ2

n‖fk‖2
)
,

and, MSE = tr[Ree] +
σ4
x

(σ2
n + σ2

x)2

[
m∑
k=1

σ2
x‖fk‖4pk +

m∑
k=1

σ2
n‖fk‖2 pk

]
.(4.12)

Since the frame bound is taken to be 1,
∑m
i=1 ‖fi‖2 = d. To minimize the first term inside the

brackets in (4.12) first consider the minimization problem

minimize µ(‖f1‖2, . . . , ‖fm‖2, p1, . . . , pm) :=

m∑
k=1

‖fk‖4 pk

subject to the constraints

g :=

m∑
k=1

pk = 1 and h :=

m∑
k=1

‖fk‖2 = d.

Using the method of Lagrange multipliers, it can be shown that µ is minimized with an equal norm

tight frame when the erasures follow a uniform distribution, i.e., pk = 1
m for all k. Using Lagrange

multipliers to minimize the other term
∑m
k=1 ‖fk‖2 pk in (4.12) gives the same conditions on the

frame and the distribution.

(b) For convenience, consider tight frames with bound A = 1. Then
∑m
i=1 ‖fi‖2 = d. If {pj} is given

and fixed, minimization of the first term within brackets in (4.12) can be stated as

minimize µ(‖f1‖2, . . . , ‖fm‖2) :=

m∑
k=1

‖fk‖4 pk

subject to

h :=

m∑
k=1

‖fk‖2 = d.

18
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By the method of Lagrange multipliers, it can be shown that the MSE is minimized if ‖fj‖2pj is

constant for all j = 1, . . . ,m given by

‖fj‖2pj =
d∑m

k=1
1
pk

.

This means that in order to minimize the MSE, for a smaller pj the corresponding frame vector fj

must have a higher norm.

Minimizing the second term inside the brackets in (4.12) results in a uniform distribution and hence

gives no additional conditions on the frame.

(ii) Using the same notation as above, and following the calculations done in the proof of Theorem 4.3 (i)

MSE = tr[Ree] +
m∑
k=1

tr[(Ree)k] pk ≥ tr[Ree] +
d2

min

(σ2
n + dmin)2

m∑
k=1

[
dmin‖fk‖4 + σ2

n‖fk‖2
]
pk

The lower bound is attained when each frame vector is an eigenvector of Rxx corresponding to its

minimum eigenvalue.

�

Remark 4.5. In Theorem 4.4, setting Rxx = σ2
xI in part (ii) gives the same result as in part (i). Besides,

since {fk}mk=1 is a frame for a d-dimensional space, the condition obtained on the frame in part (ii) implies

that the dimension of the eigenspace of the minimum eigenvalue of Rxx must be at least d.

5. Stochastic frames and erasures

Representing a signal by stochastic frames may make it harder for a third party to intercept the signal.

Therefore, stochastic frames may be an appealing choice in many situations. A way to construct stochastic

frames from low autocorrelation stochastic sequences was done in [2]. The sketch of such a construction is

as follows. Let {Yrs}r,s∈Z be independent identically distributed (i.i.d.) random variables. One can then

define the following two dimensional sequence.c For r, s ∈ Z,

(5.1) Xrs = e
2π
ε iYrs .

Consider the mapping u : Z→ Cd given by

(5.2) u(`) =
1√
d


X1`

X2`

...
Xd`

 .

cAs a one dimensional sequence, if {Yk}k∈Z are i.i.d. random variables following a Gaussian distribution with mean zero and

variance σ2, then X : Z → C with X(k) = e
2π
ε

iYk is a sequence whose autocorrelation can be made arbitrarily small, depending

on ε, everywhere except at the origin [2].
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Let u` := u(`). Consider the set of m unit vectors V = {u1, u2, . . . , um} in Cd. Let

F ∗ =
1√
d


X11 X12 · · · X1m

X21 X22 · · · X2m

...
... · · ·

...
Xd1 Xd2 · · · Xdm


so that the frame operator of V is S = F ∗F. Recall that for a tight frame the eigenvalues of the frame

operator are all equal to each other. It has been shown in [2] that, by taking ε to be small in (5.1) and a

suitable shift, the eigenvalues of S can be made arbitrarily close to each other with a high probability.

Assume that the Y s in (5.1) follow a Gaussian distribution d with mean zero and variance σ2. It can be

shown [2] that

(5.3) E[Xrs] = E[Xrs] = e−
σ2

2 ( 2π
ε )

2

.

Theorem 5.1. Let x be a d-dimensional random signal with mean zero and covariance σ2
xI. Assume a noise

vector n with zero mean and covariance σ2
nI. Consider estimating x from noisy measurements z = Fx + n

using the stochastic frame {u`}m`=1 constructed in (5.2) and (5.1) for a fixed ε. Assume that x, n, and the

frame vectors u`s are uncorrelated. Then:

(1) The MSE is

dσ2
x

[
1− σ2

x

m

d

a− b
∆

e−σ
2( 2π

ε )
2
]

where a = σ2
x + σ2

n, b = σ2
xe
−σ2( 2π

ε )2 , and ∆ = a2 + (m− 2)ab− (m− 1)b2.

(2) When there is a single erasure at location k, the extra MSE in (4.6) due to erasure is given by

tr[Ree] = dσ4
xt

2 (a− b)2a

∆2

where a, b, and ∆ are the same as given above in (1).

Proof. (1) Let Jd×m be the matrix of size d×m whose entries are all ones, and let t = 1√
d
e−

σ2

2 ( 2π
ε )

2

. Then

E[F ] = tJd×m,

Rxz = E[xx∗]E[F ∗] = tσ2
xJd×m,

Rzz = E[Fxx∗F ∗] + σ2
nI.

To compute Rzz, note that Fxx∗F ∗ is the matrix of inner products

[Fxx∗F ∗]k,` = 〈x, uk〉〈x, u`〉.

dEven though the calculations here are with the Gaussian distribution, some other distribution may be assumed.
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Using (5.3) and the i.i.d. property of the Ys

E[Fxx∗F ∗]k,` = E[〈x, uk〉〈x, u`〉] =

{
σ2
x when k = `

σ2
xe
−σ2( 2π

ε )
2

when k 6= `.

Let a = σ2
x + σ2

n, b = σ2
xe
−σ2( 2π

ε )2 , and ∆ = a2 + (m− 2)ab− (m− 1)b2. Then

Rzz =


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

 ,

and

R−1
zz =


a+(m−2)b

∆
−b
∆ · · · −b

∆
−b
∆

a+(m−2)b
∆ · · · −b

∆
...

...
. . .

...
−b
∆

−b
∆ · · · a+(m−2)b

∆

 .
From (4.1), the covariance of the error is

Ree = Rxx −RxzR−1
zz Rzx = σ2

xI − σ4
xt

2Jd×mR
−1
zz Jm×d = σ2

xI − σ4
xt

2 a− b
∆

mJd×d.

Thus, Ree is of size d× d, and has constant diagonal which gives

MSE = tr[Ree] = dσ2
x

[
1− σ2

x

m

d

a− b
∆

e−σ
2( 2π

ε )
2
]
.

(2) From (4.6), with a single erasure at location k, the extra MSE comes from the trace of Ree.

Ree = RxzR
−1
zz ERzzE

TR−1
zz Rzx = σ4

xt
2Jd×mR

−1
zz ERzzER

−1
zz Jm×d = σ4

xt
2 (a− b)2

∆2
Jd×mERzzEJm×d

= σ4
xt

2 a(a− b)2

∆2
Jd×d,

tr[Ree] = dσ4
xt

2 a(a− b)2

∆2
.

�

Remark 5.2. In Theorem 5.1, part (1), by taking the frame parameter ε tending to zero and infinity,

respectively, the upper and lower bounds for the MSE can be obtained as

dσ2
x

[
1− 1

d

mσ2
x

σ2
n +mσ2

x

]
≤MSE ≤ dσ2

x.
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