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Abstract Low autocorrelation signals have fundamental applicatiorradar and
communications. We construct constant amplitude zerocautelation (CAZAC)
sequences on the integer& by means of Hadamard matrices. We then generalize
this approach to construct unimodular sequenxaesZ whose autocorrelation,

are building blocks for all functions of. As such, algebraic relations between
Ay andAy become relevant. We provide conditions for the validitytoé formulas
Ay = Ac+Ay.

1 Introduction

1.1 Background

LetR be the real numbers, I&tbe the integers, and s&t=RR /Z. A general problem
is to characterize the family of positive bounded Radon messs-, whose inverse
Fourier transforms are the autocorrelations of boundedesezp. A special case
is whenF =1 onT andx is unimodular orZ. The statement that = 1 is the
same as saying that the autocorrelation sénishes except at &here it takes the
value 1 We shall construct such unimodular sequenceased on the analysis of
Hadamard matrices.

The problem of constructing unimodular sequences with azettocorrelation,
which our constructions address, is central in the geneeal af waveform design,
and it is particularly relevant in several applicationstie ireas of radar and com-
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munications, and in the general area of constructing phegeccwaveforms oiR
with optimal narrow band ambiguity function behavior. Irdaa, the sequences
can play a role in effective target recognition, see, eqj,, [P], [15], [20], [21],
[22], [23], [28]; and in communications they can be used tdrads synchroniza-
tion issues in cellular (phone) access technologies, edfyerode division multiple
access (CDMA), e.g., [30], [31], [32]. With regard to the mav band ambiguity
function we refer to [5], [6], [20], [25], which in turn refdo the vast literature in
this subject.

In radar there are two main reasons that the sequenslesuld be unimodular,
that is, have constant amplitude. First, a transmitter qeeraie at peak power ¥
has constant peak amplitude - the system does not have taviteahe surprise
of greater than expected amplitudes. Second, amplitudatiears during transmis-
sion due to additive noise can be theoretically eliminalda: zero autocorrelation
property ensures minimum interference between signatighthe same channel.

1.2 Autocorrelation

We shall use the standard notation from harmonic analygs, [@], [27]. N is the

set of natural numbers ar@ is the set of complex number§(TY) is the space

of C-valued continuous functions dif! = RY/Z9, and A(TY) is the subspace of
absolutely convergent Fourier serié(T9) is the space of bounded Radon mea-
sures o, i.e., M(TY) is the dual space of the Banach sp&g&) taken with

the sup normL!(T) andL?(T) are the spaces of integrable and square integrable
functions ornT, respectively. For a giveh > 0, the L!-dilation of f, f,, is defined
asf (t) = A f(At). Let A(t) = max(1— [t],0) onR. Let w(y) = (S'C/Vz/z)z; wis
called theFejer function[4]. The Fourier transform of € L1(R) is the functionf
defined by

fly) = /:) ft)e 2t ye R (= R).

A(I@) denotes the space of such absolutely convergent Founsfarms or@, with
an analogous definition fdk(ﬁ{d). We write the pairing between the functidérand
fasf <> f. The Fourier transform af is c;. The complex conjugate of a function
f at a pointt is denoted byf (t). For a setE, the measure o is denoted byE|.
Given two setdA andB, the setA\ B consists of all elements i that are not irB.

Definition 1. Theautocorrelation A : Z — C of x: Z — C is formally defined as

vk € Z, Ax[k]_llm 2N i z X[K -+ m]x[m]
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(Lower case Roman letters, suchxasre often used in some applied communities
to denote function& — C.) There is an analogous definition of autocorrelation for
functionsf : RY — C, e.g., see Theorem 1.
If F e A(TY) we writeF = f = {fi}, i.e., F[k] = fy, where, for allk € Z9, f, =
Jra F(y)e™Ydy. There is a similar definition fofi wherepy € M(TY), e.g., see
Theorem 1.

In the setting ofR, we have the following theorem due to Wiener and Wintner
[36], which was later extended ® in [3], [18].

Theorem 1.Let u be a bounded positive Radon measurelRanThere is a con-
structible function fe L7 (R) whose autocorrelation Aexists for all te R, and
A; =[1onR,i.e.,

T - . .
VteR, lim i/ f(t+x)f(x)dx=/ (1 (x).
T—eo J-T R

For any positive integel, we denote the-dimensional square i by S(N),
ie.,

S(N) = {m = (mg,mp,--- ,mg) € Z¢: -=N<m <N,i=1,--- d}.

OnZ4 the following version of the Wiener-Wintner theorem can béained [12].

Theorem 2.Let u € A(TY) be positive orillY. There is a constructible function
x: 2% — C such that

1 -

vk e 79, AdK] = Jim N TTe m;(N) X[k + m]x[m]
= fi[k]. 1)

Although the Wiener-Wintner theorem gives the constructd the functionx it
does not ensure boundedness.dh fact, x need not be an element 6f(Z) [19].
Our desire is to construct sequengeélat have constant amplitude.

LetA € (0,1) have the binary expansiond} a»0a3- - - , where eaclw; is either O
or 1. It has been shown in [34], [35] that if we consider the Lebesgeasure on
(0,1) and if we define the unimodular (in faet1-valued) functiory by

_J2ami1—1 ifk=n+1 ne NU{0},
y[k]_{ZGZn—l ifk=1-—nneN, @)
then, foralmost allvalues ofA , the autocorrelation of, Ay, is

R

Thus,Ay is the inverse Fourier transform Bf= 1 onT. Here Lebesgue measure on
(0, 1) is the probability measure ([12], page 77).
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The expression (3) defines a sequeptavingperfect autocorrelationAn ex-
plicit or deterministic construction of such a unimodulagsence ofZ is given in
[34], where the sequence consistsidfs. Inspired by that we propose a different
class of deterministic unimodular sequences with perfatdcorrelation that are
constructed from real Hadamard matrices. In fact, an extergeneralization of
such constructions can be found in [8].

Definition 2. (a) LetZ/NZ be the finite groud0, 1,...,N — 1} with addition mod-
ulo N. We say thatx: Z/NZ — C is a constant amplitude zero autocorrelation
(CAZAC) sequence ifx[k]| = 1 for eachk € Z/NZ and if

1on-1 —_—
vk=1,...,.N—1, ﬁZmoX[nH' Kx[m| = 0.

(b) Givenx: Z — C. The sequence is a CAZAC sequence 03 if |x[k]| =1 for
eachk € Z and if Ay[k] = 0 for eachk € Z\{0}.

1.3 Outline

In Section 2.1, we review properties and problems relatadadamard matrices.
This serves as background for Section 2.2, where we ediahbsrelation between
CAZAC sequences ofi/NZ, Hadamard matrices, and the discrete Fourier trans-
form. Then, in Section 2.3, we construct CAZAC sequence&.dmy means of
Hadamard matrices. Section 3 is devoted to extending therrabof Section 2

in the following way. In Section 3.1 we construct unimoddlarctions onZ whose
autocorrelations are triangles; and we view this as a gératian of the construc-
tion of CAZACs onZ. It is natural to think of such triangles as building blocks of
the functions orZ. As such, Section 3.2 is devoted to the form&jay = Ac+ Ay,

and we prove its validity a.e.

2 Hadamard matrices and CAZAC sequences

2.1 Hadamard matrices

Definition 3. A real Hadamard matrixis a square matrix whose entries are either
+1 or—1 and whose rows are mutually orthogonal.

LetH be a Hadamard matrix of ordar Then, the matrix

bR
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is a Hadamard matrix of ordem2This observation can be applied repeatedly (as
Kronecker products) to obtain the following sequence oféaiadrd matrices.

Hi=[1],
H Hi Hy ] 11
27 |Hy —=Hy | 11|
11 1 1
H H2 H2 1-11 -1
T Hy —Ho | ~ |11 —1-1|
1-1-11
Thus,
_ -sz—l sz—l
sz o _sz—l —H2k1j|

_H2k—2 H2k—2 H2k—2 H2k—2
_ H2k—2 _sz—2 H2k—2 _sz—2 (4)

H2k—2 H2k—2 —sz—Z —sz—Z
_sz—Z H2k—2 _sz—Z H2k—2

This method of constructing Hadamard matrices is due toeSyr (1867) [29].
In this manner, he constructed Hadamard matrices of ofder 2very non-negative
integerk.

The most important open question in the theory of Hadamatdees is that of
existence. Theéladamard conjecturasserts that a Hadamard matrix of ordirek-
ists for every positive intege [16]. Hadamard matrices of orders 12 and 20 were
constructed by Hadamard in 1893 [14]. He also proved thit i§ a unimodular
matrix of orderN, then|detU)| < NV/2, with equality in the cas¥ is real if and
only if U is Hadamard [14]. In 1933, Paley discovered a construckiahgroduces
a Hadamard matrix of order+ 1 whenq is any prime power that is congruent to
3 modulo 4, and that produces a Hadamard matrix of ordgr2l) whenq is a
prime power that is congruent to 1 modulo 4 [24]. His methaabU®ite fields. The
Hadamard conjecture should probably be attributed to Paleysmallest order that
cannot be constructed by a combination of Sylvester’s atey/Banethods is 92. A
Hadamard matrix of this order was found using a computer bhyniBat, Golomb,
and Hall in 1962. They used a construction, due to Williamgbat has yielded
many additional orders. In 2004, Hadi Kharaghani and Befiayfeh-Rezaie an-
nounced that they constructed a Hadamard matrix of order A2& result, the
smallest order for which no Hadamard matrix is presentlykmis 668.

Hadamard matrices are closely connected with Walsh funstj@], [26]. The
Walsh functions, constructed by J. Walsh [33], are an ohmil basis fot?(T).
Every Walsh function is constant over each of a finite numbesubintervals of
(0,1). A set of Walsh functions written down in appropriate orderass of a
matrix will give a Hadamard matrix of ordeMN2as obtained by Sylvester's method.
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The Walsh functions defined dhcorrespond to the wavelet packets associated with
the Haar multiresolution analysis.

2.2 CAZACs and circulant Hadamard matrices

An N x N matrix A of the form

a a az -+ aN
an @ a2 - an-1
A= |a-1an a1 - an-2
Q ag--aNn a
is called a circulant matrix [17]. Each row is just the prexsaow cycled forward
by one step, so that the entries in each row are just a cyciioytation of those
in the first. There is a characterization of CAZAC sequennédgiims of circulant
Hadamard matrices with complex entries, see Theorem 4,[&Q]. For any finite

sequence= (x[0],x[1],...,x[N—1]) of N complex number&N > 1), its normalized
discrete Fourier transfornt = (X[0],X[1],...,X[N — 1]) is defined by
N1 o
K[j]=N"2 ij[k]efzfﬂkl/“ (j=0,1,...,N—1).
K=

By Parseval’s relation,

S K= S IR
&, = 2 A

Itis easy to see thatis CAZAC if and only ifx andxXare unimodular (Corollary 1).
This fact is a consequence of the following result.

Theorem 3.Let x: Z/NZ — C be the sequence= (x[0],x[1],...,x[N —1]). The
condition,

1 N1
vm=1,...,N—1 NZkzo x[m+ k]x[k] = 0, (5)
is valid if and only if there is a constant ¢ such th&t= c onZ/NZ.

Proof. (i) Suppose thafX| = conZ/NZ. Then, for eachj € Z/NZ,
e AN o 1 ST a2 (k—0)] /N
R = 3, 4 5 ke ,

and so -
NIR[j)I? = ZJ XK+ ; x[K|x[e]e2m(k=OiN,
k= KZ0
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Thus, by hypothesis, we hatég[j]|> = -5 [X[n]|2 (= Nc?), and so

N—-1
> 1% z|x KIP-+ 5 g 2O,
n=0 k#

Hence, by Parseval’s identity, we have

Vj € Z/NZ, ; x[Kx[(]e" 2 =0I/N — g, (6)
k£l

Fixke {0,1,...,N—1} and letm= k— £(modN). Then, (6) becomes
N—1N—1 L o
S Y Kt mixre N =0 (7)
m=1 /=0

In particular, there arbi? — N terms in the sum of (6) since we exclude the diagonal
of anN x N array. For compatibility, for eacim there areN terms in (7), and since
there areN — 1 values ofm we see that there ai¢” — N terms in the sum of7).
Now let f[m] = 35 x[¢ + m|x[¢]. Then (7) becomes

N-1 N
Vie€Z/NZ, Y flme ?™/N 0, (8)
m=1
Multiplying both sides of (8) bye?™ /N for a fixedk € {0,1,...,N — 1}, we have
Vj € Z/NZ, Z f [mje2m(m-KI/N

and so

N-1 N—1 2ri(mK)/N
f[m) g MMI/N ) =0 9)
b3 (g
for every fixedk € {0,1,...,N —1}. Since

Nilefzrn'(mfk)j/N _ , N, k=m,
Z) ) [l S gAY
= e2m(m-k)/N_q — 7é

and sincene {1,...,N—1}, equation (9) allows us to assert tHain| = O for each
me {1,...,N—1}. In fact, for any fixedk € {1,...,N — 1}, the left side of (9)
becomedN f[k], and sof [k] = 0 by the right side of (9).

(i) The converse is proved by retracing the steps of (i)l

Corollary 1. Letx: Z/NZ — C be the unimodular sequencexx[0],X[1],...,X[N—
1]). The sequence x is a CAZAC sequence if and orlisib unimodular sequence.
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Proof. If xis a CAZAC sequence then (5) is valid and|gjo= c by Theorem 3. By
Parseval’s relation,

SURE =S XK
X = X
2 MIE= 2

or, N¢=N

where in the last step we use the fact tkas unimodular. Thus the constanis
equal to 1 and s a unimodular sequence. The converse follows by retratiisg
proof. O

Definition 4. A complex Hadamard matrix is a square matrix whose entriesiair
modular and whose rows are mutually orthogonal.

We have the following characterization of CAZAC sequenceteims of circulant
Hadamard matrices with complex entries.

Theorem 4.Given a sequence: X /NZ — C, and let H be a circulant matrix with
first row x= (x[0],X[1],...,X[N —1]). Then x is a CAZAC sequence if and onlyf H
is a Hadamard matrix.

Proof.
X0 X1 XN—1] X0 XN-1-- X
XN—1] X(0] -+ XN~ 2] XU X0 X2
HX - . e ’ HX - . .
X1 X2 X0 AN XN"7 - X0

(i) Assume thaty is a complex Hadamard matrix. Hence, all of the entriebl,of
are unimodular and
HyxH; = Nly (10)

wherely is theN x N identity matrix. As a consequence of (10) one hasnfioe

1,...,N—1,
N—1 .

/ij[“m]x[ =0

which means that has zero autocorrelation and is thus a CAZAC.

(ii) Conversely, suppose thais a CAZAC. We want to show thaty is a Hadamard
matrix. We already know that all the entriestyf are unimodular sinceis unimod-
ular and the entries dfly are the elements of We want to show thatyHy; = Nly.
Due to unimodularity

N—-1
;yﬂﬂF:N (11)

and so the diagonal entriesldfH,; equalN as required. Sinceis CAZAC,
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N-1
/% X[¢ +mx[{] =0

for m# 0, which means that every off-diagonal entrytfH;; equals zero and this
together with (11) implies thatyH; is a Hadamard matrix. O

Due to this characterization of CAZACs there is a basic iefabetween CAZACs
andfinite unit normed tight frame$FUNTFs) inCY. We shall say that : Z/NZ —
CYis a CAZAC sequence ifi¢ if each||x[K]|| = 1 and

1N
k=1, .N-1 =% (xm+K.xm)=0.

Eachx[m] = (xa[m],...,xg[m]), wherex;[m € C, me Z/NZ, andj = 1,...,d; and
the inner productis
d _

XK xml) = 5 xj k] [m.
x[k],x[m J;xj X;

The norm of eactx[K] is then||x[K]|| = (x[k],x[k])*/2. For fundamentals on frame
theory we refer to [11] or [13]. The following has been showiid].

Theorem 5.Let x= {x[n]}\_; be a CAZAC sequence @ Define

1
vk=1,...,N, v(k)=—(x[k],x[k+1],...,x[k+d—1]).
(k) \/a( [k, x[k+ 1] [ )
Then v= {v(k)}}_, is a CAZAC sequence i and {v(k)}}_, is a FUNTF forC
with frame constany{.

2.3 CAZACs and Hadamard sequences

In this section we construct infinite CAZAC sequences, CAZAC sequences on
Z, from real Hadamard matrices. Two different constructiores given. For the
proofs of Theorem 6 and Theorem 7 we refer the readers to [8].

Example 1.To construct a unimodular sequencéet H; be repeated once{2 1),
H, be repeated twice {3, H4 be repeated2times,Hg be repeated2times, and, in
general, leH,n be repeated™imes. For the positive integers, betake values row
by row from the elements of the sequence of matrices

Hi,Ho, Ho,Ha, Ha, Hg, Ha Hg, - - (12)

Setx[0] = 1 and, for anyk € N, definex[—k] = x[k]. The sequencg is called the
exponential Hadamard sequence.

Theorem 6.Let x be the exponential Hadamard sequence. Then,
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1ifk =0,
AXMZ{Oifk;ﬁO.

Instead of having the Hadamard matrices repeat exponlgraigldescribed in
Example 1, we can construct unimodular sequences, whoseatglations vanish
everywhere expect at the origin, by letting the Hadamardioest repeat linearly.

Example 2To construct the linear Hadamard sequercket Hy be repeated zero
times, H, be repeated oncéls be repeated twicdilg be repeated thrice, and, in
general, leHxn be repeated times. For the positive integers, betake values row

by row from the elements of the sequence of matrices

H2,Ha,Ha, Hg, Hg, Hg, H16, H16, H16, H16, Ha2, - - .
Setx[0] = 1, and, for anyk € N, definex|—k| = x[k|]. The sequencg is called the
linear Hadamard sequence.
The proof of the following result is similar to that of Theare.
Theorem 7.Let x be the linear Hadamard sequence. Then,

1ifk=0,
AX“‘]—{Oifm&o.

These two constructions are more general than they appsaexample, instead
of Hi = [1] one could start witlH; = [—1] and obtain the following sequence of
Hadamard matrices.

Hy=[-1],
b [HeHO]_[-1-1
27 Hy —Hy| |-11 |
1-1-1-1
W [HeH2]_|-11-11}
AT Hy —Hy| | -1-11 1|
11 1 -1

Using this sequence of Hadamard matrices in Example 1 or BbeaPrwould give
a different sequencebut one which would still have perfect autocorrelation.

Example 31n practice, for applications, we cannot use an infinite sege and we
would like to estimate the number of elements of the sequeimcExamples 1 and
2 that can be used to make the corresponding autocorrela@sonably small. In
other words, we would like to solve the following problemveme > 0, findN € N
such that

1 N
Vke Z, nglx[erk]x[m] <E.

Letx be the exponential Hadamard sequence of Example % téd andK € N.
The smallesN such that
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The autocorrelation of the function from Hadamard matrices using 2001 terms and error = 0.:
12 T T

Autocorrelation at k

o

-0.2 .
-20 et

5 -10 -5 0 5 10 15 2

0
k values

Fig. 1 Error estimates of the exponential Hadamard sequene€).2.

1 N
Vo< |kl <K, N nZlX[m+ Kixm| < &
satisfies the inequality
1 gllog(K)1+1 _ q 1
N - + 751 <& (13)

whereM is a function ofN. For more information about the relationship betwien
andN we refer to [8], [12].
(14) gives the values df obtained via (13) foK = 16 and several values of

1 5 .25 A
16 16 16 16
14 15 16 17
0(815) 0(816) 0(817) 0(818)

(14)

ZIZ| A

The actual error estimate for the exponential Hadamardesesguis illustrated in
Figure 1. This estimate is significantly better than thatotgd in (13). The dis-
parity is a consequence of the difficult counting problenteient in dealing with
Hadamard matrices. However, Figure 1 does imply a valid Giskese sequences
in applications.

Next letx be the linear Hadamard sequence of Example 2. Ga/en0O and
K € N. The smallesN such that
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N
VOo< |k <K, z X[m+Kx[m]| < €
m=1

Z|l -

satisfies the inequality

(3[logy(K)] — 1)4l0%K)+14 44 9. gM+1
2
3MAMHL _4(4M — 1)

<€, (15)

whereM is a function of\N.

(16) gives the values df obtained from (15) foK = 16 and several values ef
Once again, Figure 2 illustrates that the actual error edémare much better than
that obtained in (15).

el 5 .25 A

K|16 |16 16 16

M|5 7 13 31 (16)
N [350487354645.16 x 10°|7.97 x 10°°

The autocorrelation of the function from Hadamard matrices using 4001 terms and error = 0.:
12 T T T

Autocorrelation at k

A,

~0.2 . . . . . . .
-20 -15 -10 -5 0 5 10 15 20
k values

Fig. 2 Error estimates of the linear Hadamard sequeace0.2.
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3 Autocorrelations as sums of triangles

3.1 The construction of sequences with triangular autocorrelation

In this section a generalization of (3), the autocorretafimnction of the sequence
given by (2), and of those constructed from Hadamard matiit&ection 2.3 and
also in [8] is given.

Theorem 8.Given Me N and K> 0. Let A: Z — R be defined by

[% .
AK = K(l_‘M_‘) if 0< [kl <M, an
0 otherwise.

Then there exists a constructible sequencé&x— R with constant amplitude/K
whose autocorrelation, Ais A

Proof. (i) As mentioned in Section 1.2 one can deterministicallpstouct a uni-
modular sequencgon Z whose autocorrelation is

Ak ={3 10 (19

and we use (18) at the end of the proof. Wiener’s constru¢déjof y is as follows.
On the positive integers Igttake values in the following order:

[1,—1] (this row has 12! elements and is repeatefi2 1 time);
[1,1;1,-1;-1,1;—-1,-1] (this row has 222 elements and is repeated 2 2
times);

1,1,1;11,-1;1-1,1;2 -1 -1;-111;-11 —1;

—1,-1,1;-1,-1,-1] (this row has 323 elements and is repeateti2 4 times);
etc. Thusy[1] = 1,y[2] = —1,y[3] = 1,y[4] = 1,.... In addition, lety[0] = 1, and,
forke N, lety[—k] = y[K].

(i) We define the functio: Z — C by x[k] = \/Ky[(ﬁ]], where[.] denotes the
next largest integer. Note thd = VK.

We show that the autocorrelatiéy of x is A as defined in (17). Sinceis a real
sequence, the autocorrelation function is even, and setfitasigh to prove the result
fork>0.Let0<Mp <k<M(p+1)for somep € NU{0}. For any given integer
N, let ny be the smallest integer such tidik M(ny + 1). Then we have

N —_—
Ak = ’\|||an N1 m:ZNx[m—l— K|x[m|
Mny 1
= lim XK+ mxm| + lim —— X[m-+K|x/m
N 2N+ 1 L lemix ]+NﬁmzN+1MnN<‘m‘§N -+ kx{m)

= lim (Stn(K) + S (k) = 1K) + S(K). (19)
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First, we calculate bounds & (k).

1
12NK)| = |55 Z X[m-+K|x[m|
2N—’—]'MnN< m/<N
K 2K (N —Mny)
< o XM+ kX[ = 5 1= 2NV
2N+1MnN<Z\m\§N N+, 2 2N+1

We know from the definition ofiy thatN — Mny < M. Therefore S;(k) = 0. Con-
sequentlyAy[k] = limn_e Sy n(K) = Si(k). Next, we write

Mny
= |lim ——
N—o 2N+ 1 m:ZVInN

nn—1 M(n+1)

Si(k) X[k + mjx[m

X[k-+mjx[m] + lim

1
M oN N KX

= lim
N—o 2N +1 n=—nn m=Mn+1

(20)

Sincex has the same valugKy[n + 1] for all the integersn € [Mn+1,M(n+1)],
one can replace thgm] in the first term of the right side of (20) by'Ky[n+ 1].
Since the second term of the right side of (20) is 0 this inglie

nN—1 M(n+1)
xm-+KvVKyn+1]
n=—nNy m=Mn+1
nn—1 Mn+M(p+1)—k
lim < > x[m+ k] vKy[n+ 1]

n=—ny m=Mn+1

Sk =M oNT1

nn—1 M(n+1)
+ > > xm-+KVKy[n+ 1])
N==NN Mn+M(p+1)—k+1

nn—1 (Mn+M(p+1)k

l\h'L“m N+1, & m=Mn-1 i Pty
M(n+1)
+ > yln+ p+2)y[n+ 1])
m=Mn+M(p+1)—k+1
ny—1
> ((M(p+1)—Kkyln+p+1)yn+1]

n=-—nyN

— lim ——
N 2N 1

+ (k—Mp)y[n+ p+ 2y[n+1])
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_ M(p+1)—k 2nyK ™t
= lim yin+ p+1]y[n+1]+
N—ew  2N-+1 2ny n:ZnN

_ (k—Mp) 2nyK ™t
+lim ~—————~ yin+ p+2)y[n+1].
N—eo 2N+1 2ny n:ZnN

Sinceny — o asN — oo, we have

. L M(p+1)—k _ k—Mp
am Stk = WM o8 2KALPIE M S5 KA P+

. k 2nyM

= lim, (p“‘ m) Ny AP (21)

. k 2nyM

#lm () 2 akAlp+

Note that oM
NN -
NN 1 (22)

In fact, from the choice ofiy, we haveMny < N < M(ny + 1) so that Mny + 1 <
2N+ 1< 2M(ny +1) 41, and hence

2Mny 2Mny < 2Mny
2M(ny+1)+1 " 2N+1 7~ 2Mny+1°

nn goes to infinity adN goes to infinity and so taking limits throughoutidgoes to
infinity we obtain (22).

Substituting (22) in (21) and using the fact tigatk) = 0, we obtain from (19)
that

A =0 =K (p+1- 10 ) Afa+K (- P) Alp+ 1l

If 0 <k < M thenp=0. For every other range & p is non-zero. Using the values
of Ay[p] as given by (18) and the fact tha is an even function one obtains (17).
O

Remark 1The functionAdefined in Theorem 8 is the trianglex v (t) = Kmax(1—

%,0) onR with heightK and base length\ restricted to the integers. The Fourier
. 2

transform of Ak m(t) is KM (S'gmy) . Thus in Theorem 8 we have constructed a

sequence of constant amplitude whose autocorrelation is the invEcagier trans-
form of the dilated Fejér functiok cpmv -
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3.2 The additive property of triangular autocorrelation a.e.

As mentioned in Section 1.2, and repeated in the proof of fdmad, it has been
shown in [34], [35] that ifA € (0,1) has binary expansion@ azas-- -, if we con-
sider the Lebesgue measure @1), and if we define the unimodular (in fact,
+1-valued) functiory by

K = 2aon11—1 ifk=n+1ne NU{0},
" 12an—1 ifk=1-nneN,

then, foralmost allvalues ofA , the autocorrelation of, Ay, is

0 ifk£0,
Ay[k]:{l ko0

In Theorem 8 it was shown that givésh € N thisy can be used to construcsuch
thatx has constant amplitude and

1-M ifo<|k<™m
A = { L7 w TO<TK <M,
x(K {O otherwise.

3

In this casex is unimodular. We shall now show that the autocorrelatiotihefsum
of two such functions is the sum of the respective autocatimais for almost alk.
We begin with the following calculation.

Example 4Let X be the set of unimodular functions: Z — C for which there
exists a positive integévl with the property,

1-K ifo<|k <M
Ak ={ L w TSIk <M,
(K {O otherwise.

)

For givenM € N let Q be the set of all possibilities of anyv2consecutive values of
x € X. Then cardQ) = 2°M. Let E be the subset a@ such that giverz, the sum of
the 2Vl consecutive values afexceed$/ ¢ in absolute value. Among thé\Rvalues
suppose that there atdl — j) +1sandM+j) —1s where-M < j <M. So the
absolute value of the sum ofMRconsecutive values would b&l + j — (M — j)| =
2|j|. The sum of these values excedds in absolute value ifMe] < 2|j| < 2M.
The number of ways of havingM — j) +1s and(M + j) —1s is (,ﬁ'\,ﬂj) = (,ﬁj)
The total number of possible values for which the sum exchbtads

cardE) = %m (MZ&') N [%W] (MZTJ) +j—[i€] (MZTj) _21—%‘9] <M2I\_Aj>.

iI=[%°] =% '

Consequently,
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cardE) ., ou, « ( M ) DY ( 2M )
card Q) p%% M= Jg%]M_”

Theorem 9.(a) Let X be the set of unimodular functionsZ — C for which there
exists a positive integer M with the property,

1-M ifo<k<m
A= 1w T OSIK <M,
(K { 0, otherwise.

Then there is a well defined finite Borel measure p on X indueed Eebesgue
measuré on (0,1), in a manner described in the proof.
(b) For almost all xy € X, with respect to pwe have

Axry = Ax+ Ay,

noting that x+y does not necessarily have constant amplitude and thgtia not
generally a triangle.

Proof. (a) We know from (2) and (3) that there$s C [0, 1] defined by the proper-
ties:|S| =1 and

VA €S, 3uy:Z— Csuchthatu,|=1andAy, [k = &k onZ.

From Theorem 8 we know that for eabhe N, there isSy C [0, 1] defined by the
propertiesjSu| = 1 and

VA € Su, 3H, 1 Z — C such thafu, | = 1 andAy, [k = max(0,1— |I\/I£|) onZ.

In fact, by the way we defined, in Theorem 8 we could tak8y = . However,
we can equally-well choos€Sy : Su € S,|Su| = 1} to be a disjoint collection
whose union isS. In this case we define the functionfyy : Sy — X, A — U,
whereAy, K| = max(0,1— ‘Mﬂ) onZ,andf : S — X, A — fu(A) whenA € Su.
In this way we usef to define a compact topology ofinduced fromS C [0, 1],
and to define a bounded Borel measpren X induced from Lebesgue measure on
[0,1].

We provide the technical propertiespfn part (b) of the proof.
(b) We have already seen the construction of suahdy in Theorem 8. Formally,

1 For the necessary measure theory and definitions of Borelelnesgue measure we refer to [7].
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s = im s 5 Gy K
= Jim 2N+1§N(x[m+k]+y[m+ 1) O] -+ y[m)
=M N1 Z m+ﬂ[]+@$éﬁii ZNym+M[]
'+¢M2N11 Z X[m-+ Ky{m] AMZN % [m-+Kixfm]
= Ax(k)+Ay(K) + lim 2N1+ i Z x[m -+ Kly[m] +
+ lim z y[m+ K|x[m. (23)

N—o 2N +1 mEN
Let us denote the last two terms on the right side of (23pbsindS, respectively.
We want to show thafs = 0 andS; = 0.
N

S= M gy 3 MKy (24)

Without loss of generality we takgeto be real-valued and so (24) becomes

S = N%MZN 1% x[m+ KJy[ (25)
Suppose that

Ax[k]_{a ‘ othersine,
and

1— g, if0 < |k <My,
e K =M
0 otherwise.

)

Let By be the largest integer so that
MaP < N < Ma(Py +1). (26)

ThenS; can be written as
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- Mt 1 N
S=lim >3 m:ZN X[m-+Kylm + lim So=— N Ng%lx[er Kly[m] +
) M2Py
+ l\lllipoo N1 m—%zm X[m-Ky[m. (27)

Let us denote the first two terms of (27) byands,, respectively. Now,

—MpPy—1
sl< S 1=N-MPRy
m=—N
and
N
52| < 1=N—MPy.
m=MyPy+1
From (26),

N—MxPy < Mz(By+1) —MaPy =My
which meangs;| < M, and|s;| < M,. Therefore,

. M
ﬁ< lim 2

AT oL AT N
and also %] M
Iman i <im0
Thus,
. M2y
S = lim N1 m:*%zPN X[m+ k]y[m] (28)

1 Pv—1 Ma(n+1)
= lim —— X[m+Ky[m] +
N=e 2N 41 n:ZFN m=NMn+1

1
lim
+ Nlaoo 2N+1

1 PN—1 Ma(n+1)
= lim -——— XM+ Kly[Mz(n+1)]. (29)
N1, 00

X[—MzP\ + Kly[—M2R\]

- N—oc0

The last step (29) follows due to the fact that by construtis constant and equal
to either+1 or—1 in the intervalMan+ 1, Ma(n+ 1)]. Soy[M2(n+1)] is either+1

or —1. BetweenMan+ 1) andMz(n+ 1) there areévl terms. So there aid, values

of x. Suppose that of thedé, values there argthat have the value 1 and(M, — j)
that have the value 1. Upon multiplication byy(M»(n+ 1)) we have eithef values
thatare—1 and(M; — j) values that are-1 or vice versa. In the sum on the right side
of (29) there are B\ blocks of lengthM,. Let us say that the first block hgsterms
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equal to+1 and(M;, — j1) terms equal te-1, the second block hgs terms equal to
+1 and(M; — j,) terms equal te-1 and so on. Together, there diig + jo+--- +
jony) terms equal ter1 and(Mz — j1+Ma— jo+---+Mo— jop,) = 2RAM2 — (j1+
jo+ -+ j2n) terms equal to-1. LetPyMp =M andjy + jo+ -+ jop, =M —
where—M < j < M. Note that thidM is unrelated to th&1 that appears in Theorem
8 and part (a) of the statement of this theorem where it indgthe length of the
base of a triangle. TherP@M> — (j1+ jo+---+jop) =2M = (M — j) =M+ |.
Thus, out of M consecutive values ofm+k]y[m| there ar§M — j) values that are
+land(M+ j) values that are-1. So the absolute value of the sum &&M, = 2M
consecutive values ofm+ Kym] would beM + j — (M — ) = 2]j|.

Let Q be the set of all possibilities for thévRconsecutive values ofm-+ k]y[m].
From (2), each suck andy corresponds to some € (0,1). From Example 4 and
the definition ofe C Q there, it follows that gives the measure of the set for which
the sum of M consecutive values exceelds in absolute value is

cardE) _ p-2M+1 i < 2M >
card Q) J_ [%f] M—j

This can be transported as an explicit, computable propény
It can be shown in a manner identical to that in [34] that

M 2M

i 9—2M+1 _

'\Llinwz ; %s <M_J>_O
=]

Thus the set ok andy for which there should fail to be an integral valueMf=

PuMy such that from that value on (see (28))

| % X[m-+ Ky[mi| < Me +1

m=—M

has measure zero. Therefore,

(30)

— 1 M Me+1 PyMe 1
Pivoul sl 3 o] < MEED |
M- o, 2 MM S ST T N1 TNt

From (26), A N L
2

< —
2NT1 2Nl 2
asN goes to infinity. So, the left side of (30) is less thiiand for almost alk and
Y

. 1 X
M, o1, 2, XM kim =0.

In a similar way one can show that
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S=1

Nt 2N+ 1 Z yim-+kix{m] =0

for almost everyi andy. This concludes proving part (b).0
Remark 2Due to Theorem 8, Theorem 9 can be trivially generalizedandy that
have constant amplitud€ andKj respectively and have autocorrelation functions

A = Kl(l ‘k‘) if 0 < K| <M,
0, otherwise,

A = Kz(l ‘k‘) if 0 < |K < My,
Y 0 otherwise.

and

3

. 2
Remark 3GivenK > 0 andM € N, onRR, the inverse Fourier transform bfK (_a;my)

is Kmax(l— %,O). By the additive property of Fourier transform, the inverse

2
Fourier transform oF (y) = N 1nKn(5'“"”V) , restricted tdz, is

N
= Z Knmax(1— m,O).
n=1 n

Due to Theorem 8, one can construct functignsuch tha#, = Kymax(1— @,0)
with |xa| = /Kq. Theorem 9 implies that the sequence x; + - -- + xy has auto-
correlationF . Also, x € £°(Z) since|x| is bounded byy\_, /Ky,. Thus we have a
functionx € ¢*(Z) whose autocorrelation is the inverse Fourier transfornilafebs
of Fejér functions.

Example 5Generally,Ax;y[k] # Axk] + Ay[K]. In fact, in the case of real-valued
sequences,y € (*(Z), when all limits asN — oo exist, Agyy[K| = AxK] + Ay k] +
2A[—k], and there is no reason to expégy[—k| = 0 for eachk € Z. Here, Ay is
the cross-correlation ofandy defined by

vk € Z, Aylk = lim 1 > xlk-+mly[m].

As a particular example, note that the binary expansiorts, a/precision of 16
bit, of Ax=0.35and\y = 0.9 are 001011001100110011 andld10011001100110
respectively. From these one can obtain sequera®ly of +1s by following
the definition ofy in (2). The partial autocorrelations &f y, andx+y have been
calculated by computing the sum in Definition 1 fér= 100Q i.e., 2N+ 1 = 2001
terms. These partial autocorrelations at the integersdew10 and 10 are plotted
in Figure 3. Clearly, the sums of the autocorrelationg ahdy do not match the
autocorrelation ok +.
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—#+— Autocorrelation of x
< -+ Autocorrelation of y |

0 -5 0 5 10

0.01 T T
m of the autocorrelations of x and y|

-10 -5 0 5 10

Autocorrelation
o
=
3
&

Autocorrelation of x+y
3951

39 . . .
-10 -5 0 5 10
k values

Fig. 3 Autocorrelations of two sequencesndy and their sum

4 Conclusions

In this chapter Hadamard matrices have been used to constmistant amplitude
zero autocorrelation (CAZAC) sequences BnSuch sequences are important in
the areas of radar and communication. This is generalizédet@onstruction of
unimodular sequences @nwhose autocorrelations are triangles. Finally, condgion
under which the autocorrelation of the sum of two sequerscéeisame as the sum
of the respective autocorrelations are studied.
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