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Abstract Low autocorrelation signals have fundamental applications in radar and
communications. We construct constant amplitude zero autocorrelation (CAZAC)
sequencesx on the integersZ by means of Hadamard matrices. We then generalize
this approach to construct unimodular sequencesx onZ whose autocorrelationsAx

are building blocks for all functions onZ. As such, algebraic relations between
Ax andAy become relevant. We provide conditions for the validity of the formulas
Ax+y = Ax+Ay.

1 Introduction

1.1 Background

LetR be the real numbers, letZ be the integers, and setT=R/Z.A general problem
is to characterize the family of positive bounded Radon measuresF, whose inverse
Fourier transforms are the autocorrelations of bounded sequencesx. A special case
is whenF ≡ 1 onT andx is unimodular onZ. The statement thatF ≡ 1 is the
same as saying that the autocorrelation ofx vanishes except at 0, where it takes the
value 1. We shall construct such unimodular sequencesx based on the analysis of
Hadamard matrices.

The problem of constructing unimodular sequences with zeroautocorrelation,
which our constructions address, is central in the general area of waveform design,
and it is particularly relevant in several applications in the areas of radar and com-
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munications, and in the general area of constructing phase coded waveforms onR
with optimal narrow band ambiguity function behavior. In radar, the sequencesx
can play a role in effective target recognition, see, e.g., [1], [9], [15], [20], [21],
[22], [23], [28]; and in communications they can be used to address synchroniza-
tion issues in cellular (phone) access technologies, especially code division multiple
access (CDMA), e.g., [30], [31], [32]. With regard to the narrow band ambiguity
function we refer to [5], [6], [20], [25], which in turn referto the vast literature in
this subject.

In radar there are two main reasons that the sequencesx should be unimodular,
that is, have constant amplitude. First, a transmitter can operate at peak power ifx
has constant peak amplitude - the system does not have to dealwith the surprise
of greater than expected amplitudes. Second, amplitude variations during transmis-
sion due to additive noise can be theoretically eliminated.The zero autocorrelation
property ensures minimum interference between signals sharing the same channel.

1.2 Autocorrelation

We shall use the standard notation from harmonic analysis, e.g., [4], [27].N is the
set of natural numbers andC is the set of complex numbers.C(Td) is the space
of C-valued continuous functions onTd = Rd/Zd, andA(Td) is the subspace of
absolutely convergent Fourier series.M(Td) is the space of bounded Radon mea-
sures onTd, i.e., M(Td) is the dual space of the Banach spaceC(Td) taken with
the sup norm.L1(T) andL2(T) are the spaces of integrable and square integrable
functions onT, respectively. For a givenλ > 0, theL1-dilation of f , fλ , is defined

as fλ (t) = λ f (λ t). Let△(t) = max(1−|t|,0) onR. Let ω(γ) = 1
2π

(
sinγ/2

γ/2

)2
; ω is

called theFejér function[4]. The Fourier transform off ∈ L1(R) is the functionf̂
defined by

f̂ (γ) =
∫ ∞

−∞
f (t)e−2π itγ dt, γ ∈ R̂ (= R).

A(R̂) denotes the space of such absolutely convergent Fourier transforms on̂R, with
an analogous definition forA(R̂d). We write the pairing between the functionf and
f̂ as f ↔ f̂ . The Fourier transform of△ is ω2π . The complex conjugate of a function
f at a pointt is denoted byf (t). For a setE, the measure ofE is denoted by|E|.
Given two setsA andB, the setA\B consists of all elements inA that are not inB.

Definition 1. Theautocorrelation Ax : Z→ C of x : Z→ C is formally defined as

∀k∈ Z, Ax[k] = lim
N→∞

1
2N+1

N

∑
m=−N

x[k+m]x[m].
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(Lower case Roman letters, such asx, are often used in some applied communities
to denote functionsZ→ C.) There is an analogous definition of autocorrelation for
functions f : Rd →C, e.g., see Theorem 1.

If F ∈ A(Td) we write F̌ = f = { fk}, i.e., F̌ [k] = fk, where, for allk ∈ Zd, fk =∫
Td F(γ)e2π ik·γ dγ. There is a similar definition fořµ whereµ ∈ M(Td), e.g., see

Theorem 1.
In the setting ofR, we have the following theorem due to Wiener and Wintner

[36], which was later extended toRd in [3], [18].

Theorem 1.Let µ be a bounded positive Radon measure onR. There is a con-
structible function f∈ L∞

loc(R) whose autocorrelation Af exists for all t∈ R, and
Af = µ̌ onR, i.e.,

∀t ∈ R, lim
T→∞

1
2T

∫ T

−T
f (t + x) f (x)dx=

∫

R

e2π itxdµ(x).

For any positive integerN, we denote thed-dimensional square inZd by S(N),
i.e.,

S(N) = {m = (m1,m2, · · · ,md) ∈ Z
d : −N 6 mi 6 N, i = 1, · · · ,d}.

OnZd the following version of the Wiener-Wintner theorem can be obtained [12].

Theorem 2.Let µ ∈ A(Td) be positive onTd. There is a constructible function
x : Zd →C such that

∀k ∈ Z
d, Ax[k] = lim

N→∞

1
(2N+1)d ∑

m∈S(N)

x[k +m]x[m]

= µ̌ [k]. (1)

Although the Wiener-Wintner theorem gives the construction of the functionx it
does not ensure boundedness ofx. In fact,x need not be an element ofℓ∞(Z) [19].
Our desire is to construct sequencesx that have constant amplitude.

Let λ ∈ (0,1) have the binary expansion 0.α1α2α3 · · · , where eachαi is either 0
or 1. It has been shown in [34], [35] that if we consider the Lebesgue measure on
(0,1) and if we define the unimodular (in fact,±1-valued) functiony by

y[k] =

{
2α2n+1−1 if k= n+1, n∈ N∪{0},
2α2n−1 if k= 1−n, n∈ N,

(2)

then, foralmost allvalues ofλ , the autocorrelation ofy, Ay, is

Ay[k] =

{
0 if k 6= 0,
1 if k= 0.

(3)

Thus,Ay is the inverse Fourier transform ofF ≡ 1 onT. Here Lebesgue measure on
(0, 1) is the probability measure ([12], page 77).
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The expression (3) defines a sequencey havingperfect autocorrelation. An ex-
plicit or deterministic construction of such a unimodular sequence onZ is given in
[34], where the sequence consists of±1s. Inspired by that we propose a different
class of deterministic unimodular sequences with perfect autocorrelation that are
constructed from real Hadamard matrices. In fact, an extensive generalization of
such constructions can be found in [8].

Definition 2. (a) LetZ/NZ be the finite group{0,1, . . . ,N−1} with addition mod-
ulo N. We say thatx : Z/NZ → C is a constant amplitude zero autocorrelation
(CAZAC) sequence if|x[k]|= 1 for eachk∈ Z/NZ and if

∀k= 1, . . . ,N−1,
1
N∑N−1

m=0x[m+ k]x[m] = 0.

(b) Givenx : Z → C. The sequencex is a CAZAC sequence onZ if |x[k]| = 1 for
eachk∈ Z and if Ax[k] = 0 for eachk∈ Z\{0}.

1.3 Outline

In Section 2.1, we review properties and problems related toHadamard matrices.
This serves as background for Section 2.2, where we establish the relation between
CAZAC sequences onZ/NZ, Hadamard matrices, and the discrete Fourier trans-
form. Then, in Section 2.3, we construct CAZAC sequences onZ by means of
Hadamard matrices. Section 3 is devoted to extending the material of Section 2
in the following way. In Section 3.1 we construct unimodularfunctions onZ whose
autocorrelations are triangles; and we view this as a generalization of the construc-
tion of CAZACs onZ. It is natural to think of such triangles as building blocks of
the functions onZ. As such, Section 3.2 is devoted to the formulaAx+y = Ax+Ay,
and we prove its validity a.e.

2 Hadamard matrices and CAZAC sequences

2.1 Hadamard matrices

Definition 3. A real Hadamard matrixis a square matrix whose entries are either
+1 or−1 and whose rows are mutually orthogonal.

Let H be a Hadamard matrix of ordern. Then, the matrix
[

H H
H −H

]
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is a Hadamard matrix of order 2n. This observation can be applied repeatedly (as
Kronecker products) to obtain the following sequence of Hadamard matrices.

H1 =
[

1
]
,

H2 =

[
H1 H1

H1 −H1

]
=

[
1 1
1 −1

]
,

H4 =

[
H2 H2

H2 −H2

]
=




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 , · · · .

Thus,

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]

=




H2k−2 H2k−2 H2k−2 H2k−2

H2k−2 −H2k−2 H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 H2k−2


 . (4)

This method of constructing Hadamard matrices is due to Sylvester (1867) [29].
In this manner, he constructed Hadamard matrices of order 2k for every non-negative
integerk.

The most important open question in the theory of Hadamard matrices is that of
existence. TheHadamard conjectureasserts that a Hadamard matrix of order 4N ex-
ists for every positive integerN [16]. Hadamard matrices of orders 12 and 20 were
constructed by Hadamard in 1893 [14]. He also proved that ifU is a unimodular
matrix of orderN, then|det(U)| ≤ NN/2, with equality in the caseU is real if and
only if U is Hadamard [14]. In 1933, Paley discovered a construction that produces
a Hadamard matrix of orderq+1 whenq is any prime power that is congruent to
3 modulo 4, and that produces a Hadamard matrix of order 2(q+ 1) whenq is a
prime power that is congruent to 1 modulo 4 [24]. His method uses finite fields. The
Hadamard conjecture should probably be attributed to Paley. The smallest order that
cannot be constructed by a combination of Sylvester’s and Paley’s methods is 92. A
Hadamard matrix of this order was found using a computer by Baumert, Golomb,
and Hall in 1962. They used a construction, due to Williamson, that has yielded
many additional orders. In 2004, Hadi Kharaghani and BehruzTayfeh-Rezaie an-
nounced that they constructed a Hadamard matrix of order 428. As a result, the
smallest order for which no Hadamard matrix is presently known is 668.

Hadamard matrices are closely connected with Walsh functions [2], [26]. The
Walsh functions, constructed by J. Walsh [33], are an orthonormal basis forL2(T).
Every Walsh function is constant over each of a finite number of subintervals of
(0,1). A set of Walsh functions written down in appropriate order asrows of a
matrix will give a Hadamard matrix of order 2N as obtained by Sylvester’s method.
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The Walsh functions defined onR correspond to the wavelet packets associated with
the Haar multiresolution analysis.

2.2 CAZACs and circulant Hadamard matrices

An N×N matrixA of the form

A=




a1 a2 a3 · · · aN

aN a1 a2 · · · aN−1

aN−1 aN a1 · · · aN−2
...

...
. . .

. . .
...

a2 a3 · · · aN a1




is called a circulant matrix [17]. Each row is just the previous row cycled forward
by one step, so that the entries in each row are just a cyclic permutation of those
in the first. There is a characterization of CAZAC sequences in terms of circulant
Hadamard matrices with complex entries, see Theorem 4, e.g., [10]. For any finite
sequencex=(x[0],x[1], . . . ,x[N−1])of N complex numbers(N≥1), itsnormalized
discrete Fourier transform̂x= (x̂[0], x̂[1], . . . , x̂[N−1]) is defined by

x̂[ j] = N− 1
2

N−1

∑
k=0

x[k]e−2π ik j/N ( j = 0,1, . . . ,N−1).

By Parseval’s relation,
N−1

∑
k=0

|x[k]|2 =
N−1

∑
j=0

|x̂[ j]|2.

It is easy to see thatx is CAZAC if and only ifx andx̂ are unimodular (Corollary 1).
This fact is a consequence of the following result.

Theorem 3.Let x : Z/NZ → C be the sequence x= (x[0],x[1], . . . ,x[N−1]). The
condition,

∀m= 1, . . . ,N−1,
1
N∑N−1

k=0 x[m+ k]x[k] = 0, (5)

is valid if and only if there is a constant c such that|x̂|= c onZ/NZ.

Proof. (i) Suppose that|x̂|= c onZ/NZ. Then, for eachj ∈ Z/NZ,

|x̂[ j]|2 = 1
N

N−1

∑
k=0

|x[k]|2+ 1
N ∑

k6=ℓ

x[k]x[ℓ]e−2π i(k−ℓ) j/N,

and so

N|x̂[ j]|2 =
N−1

∑
k=0

|x[k]|2+ ∑
k6=ℓ

x[k]x[ℓ]e−2π i(k−ℓ) j/N.
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Thus, by hypothesis, we haveN|x̂[ j]|2 = ∑N−1
n=0 |x̂[n]|2 (= Nc2), and so

N−1

∑
n=0

|x̂[n]|2 =
N−1

∑
k=0

|x[k]|2+ ∑
k6=ℓ

x[k]x[ℓ]e−2π i(k−ℓ) j/N.

Hence, by Parseval’s identity, we have

∀ j ∈ Z/NZ, ∑
k6=ℓ

x[k]x[ℓ]e−2π i(k−ℓ) j/N = 0. (6)

Fix k∈ {0,1, . . . ,N−1} and letm= k− ℓ(modN). Then, (6) becomes

N−1

∑
m=1

N−1

∑
ℓ=0

x[ℓ+m]x[ℓ]e−2π im j/N = 0. (7)

In particular, there areN2−N terms in the sum of (6) since we exclude the diagonal
of anN×N array. For compatibility, for eachm there areN terms in (7), and since
there areN−1 values ofm we see that there areN2 −N terms in the sum of(7).
Now let f [m] = ∑N−1

ℓ=0 x[ℓ+m]x[ℓ]. Then (7) becomes

∀ j ∈ Z/NZ,
N−1

∑
m=1

f [m]e−2π im j/N = 0. (8)

Multiplying both sides of (8) bye2π ik j/N, for a fixedk∈ {0,1, . . . ,N−1}, we have

∀ j ∈ Z/NZ,
N−1

∑
m=1

f [m]e−2π i(m−k) j/N = 0,

and so
N−1

∑
m=1

f [m]

(
N−1

∑
j=0

e−2π i(m−k) j/N

)
= 0 (9)

for every fixedk∈ {0,1, . . . ,N−1}. Since

N−1

∑
j=0

e−2π i(m−k) j/N =

{
N, k= m,

e−2π i(m−k)−1
e−2π i(m−k)/N−1

= 0, k 6= m,

and sincem∈ {1, . . . ,N−1}, equation (9) allows us to assert thatf [m] = 0 for each
m∈ {1, . . . ,N− 1}. In fact, for any fixedk ∈ {1, . . . ,N− 1}, the left side of (9)
becomesN f [k], and sof [k] = 0 by the right side of (9).
(ii) The converse is proved by retracing the steps of (i).⊓⊔

Corollary 1. Let x:Z/NZ→C be the unimodular sequence x=(x[0],x[1], . . . ,x[N−
1]). The sequence x is a CAZAC sequence if and only ifx̂ is a unimodular sequence.
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Proof. If x is a CAZAC sequence then (5) is valid and so|x̂|= c by Theorem 3. By
Parseval’s relation,

N−1

∑
j=0

|x̂[ j]|2 =
N−1

∑
k=0

|x[k]|2

or, Nc2 = N

where in the last step we use the fact thatx is unimodular. Thus the constantc is
equal to 1 and ˆx is a unimodular sequence. The converse follows by retracingthis
proof. ⊓⊔

Definition 4. A complex Hadamard matrix is a square matrix whose entries are uni-
modular and whose rows are mutually orthogonal.

We have the following characterization of CAZAC sequences in terms of circulant
Hadamard matrices with complex entries.

Theorem 4.Given a sequence x: Z/NZ→C, and let Hx be a circulant matrix with
first row x= (x[0],x[1], . . . ,x[N−1]). Then x is a CAZAC sequence if and only if Hx

is a Hadamard matrix.

Proof.

Hx =




x[0] x[1] · · · x[N−1]
x[N−1] x[0] · · · x[N−2]
...

... · · ·
...

x[1] x[2] · · · x[0]


 , H∗

x =




x[0] x[N−1] · · · x[1]
x[1] x[0] · · · x[2]
...

... · · ·
...

x[N−1] x[N−2] · · · x[0]


 .

(i) Assume thatHx is a complex Hadamard matrix. Hence, all of the entries ofHx

are unimodular and
HxH

∗
x = NIN (10)

whereIN is theN×N identity matrix. As a consequence of (10) one has form=
1, . . . ,N−1,

N−1

∑
ℓ=0

x[ℓ+m]x[ℓ] = 0

which means thatx has zero autocorrelation and is thus a CAZAC.
(ii) Conversely, suppose thatx is a CAZAC. We want to show thatHx is a Hadamard
matrix. We already know that all the entries ofHx are unimodular sincex is unimod-
ular and the entries ofHx are the elements ofx. We want to show thatHxH∗

x = NIN.
Due to unimodularity

N−1

∑
ℓ=0

|x[ℓ]|2 = N (11)

and so the diagonal entries ofHxH∗
x equalN as required. Sincex is CAZAC,
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N−1

∑
ℓ=0

x[ℓ+m]x[ℓ] = 0

for m 6= 0, which means that every off-diagonal entry ofHxH∗
x equals zero and this

together with (11) implies thatHxH∗
x is a Hadamard matrix.⊓⊔

Due to this characterization of CAZACs there is a basic relation between CAZACs
andfinite unit normed tight frames(FUNTFs) inCd. We shall say thatx : Z/NZ→
Cd is a CAZAC sequence inCd if each‖x[k]‖= 1 and

∀k= 1, . . . ,N−1,
1
N∑N−1

m=0〈x[m+ k],x[m]〉= 0.

Eachx[m] = (x1[m], . . . ,xd[m]), wherex j [m] ∈ C, m∈ Z/NZ, and j = 1, . . . ,d; and
the inner product is

〈x[k],x[m]〉=
d

∑
j=1

x j [k]x j [m].

The norm of eachx[k] is then‖x[k]‖ = 〈x[k],x[k]〉1/2. For fundamentals on frame
theory we refer to [11] or [13]. The following has been shown in [9].

Theorem 5.Let x= {x[n]}N
n=1 be a CAZAC sequence inC. Define

∀k= 1, . . . ,N, v(k) =
1√
d
(x[k],x[k+1], . . . ,x[k+d−1]).

Then v= {v(k)}N
k=1 is a CAZAC sequence inCd and{v(k)}N

k=1 is a FUNTF forCd

with frame constantNd .

2.3 CAZACs and Hadamard sequences

In this section we construct infinite CAZAC sequences, i.e.,CAZAC sequences on
Z, from real Hadamard matrices. Two different constructions are given. For the
proofs of Theorem 6 and Theorem 7 we refer the readers to [8].

Example 1.To construct a unimodular sequencex, let H1 be repeated once (20 = 1),
H2 be repeated twice (21), H4 be repeated 22 times,H8 be repeated 23 times, and, in
general, letH2n be repeated 2n times. For the positive integers, letx take values row
by row from the elements of the sequence of matrices

H1,H2,H2,H4,H4,H4,H4,H8, · · · . (12)

Setx[0] = 1 and, for anyk ∈ N, definex[−k] = x[k]. The sequencex is called the
exponential Hadamard sequence.

Theorem 6.Let x be the exponential Hadamard sequence. Then,
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Ax[k] =

{
1 if k = 0,
0 if k 6= 0.

Instead of having the Hadamard matrices repeat exponentially as described in
Example 1, we can construct unimodular sequences, whose autocorrelations vanish
everywhere expect at the origin, by letting the Hadamard matrices repeat linearly.

Example 2.To construct the linear Hadamard sequencex, let H1 be repeated zero
times,H2 be repeated once,H4 be repeated twice,H8 be repeated thrice, and, in
general, letH2n be repeatedn times. For the positive integers, letx take values row
by row from the elements of the sequence of matrices

H2,H4,H4,H8,H8,H8,H16,H16,H16,H16,H32, · · · .
Setx[0] = 1, and, for anyk ∈ N, definex[−k] = x[k]. The sequencex is called the
linear Hadamard sequence.

The proof of the following result is similar to that of Theorem 6.

Theorem 7.Let x be the linear Hadamard sequence. Then,

Ax[k] =

{
1 if k = 0,
0 if k 6= 0.

These two constructions are more general than they appear. For example, instead
of H1 = [1] one could start withH1 = [−1] and obtain the following sequence of
Hadamard matrices.

H1 =
[
−1
]
,

H2 =

[
H1 H1

H1 −H1

]
=

[
−1 −1
−1 1

]
,

H4 =

[
H2 H2

H2 −H2

]
=




−1 −1 −1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1


 , · · · .

Using this sequence of Hadamard matrices in Example 1 or Example 2 would give
a different sequencex but one which would still have perfect autocorrelation.

Example 3.In practice, for applications, we cannot use an infinite sequence and we
would like to estimate the number of elements of the sequences in Examples 1 and
2 that can be used to make the corresponding autocorrelationreasonably small. In
other words, we would like to solve the following problem: givenε > 0, find N ∈N

such that

∀k∈ Z,

∣∣∣∣∣
1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε.

Let x be the exponential Hadamard sequence of Example 1. Letε > 0 andK ∈N.
The smallestN such that
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The autocorrelation of the function from Hadamard matrices using 2001 terms and error = 0.2

Fig. 1 Error estimates of the exponential Hadamard sequence;ε = 0.2.

∀ 0< |k| ≤ K,

∣∣∣∣∣
1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε

satisfies the inequality

1
N

8⌈log2(K)⌉+1−1
7

+7
1

2M+1 < ε, (13)

whereM is a function ofN. For more information about the relationship betweenM
andN we refer to [8], [12].

(14) gives the values ofN obtained via (13) forK = 16 and several values ofε.

ε 1 .5 .25 .1
K 16 16 16 16
M 14 15 16 17
N O(815) O(816) O(817) O(818)

(14)

The actual error estimate for the exponential Hadamard sequence is illustrated in
Figure 1. This estimate is significantly better than that obtained in (13). The dis-
parity is a consequence of the difficult counting problems inherent in dealing with
Hadamard matrices. However, Figure 1 does imply a valid use of these sequences
in applications.

Next let x be the linear Hadamard sequence of Example 2. Givenε > 0 and
K ∈ N. The smallestN such that
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∀ 0< |k| ≤ K,

∣∣∣∣∣
1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε

satisfies the inequality

(3⌈log2(K)⌉−1)4⌈log2(K)⌉+1+4+9 ·4M+1

3M4M+1−4(4M −1)
< ε, (15)

whereM is a function ofN.
(16) gives the values ofN obtained from (15) forK = 16 and several values ofε.

Once again, Figure 2 illustrates that the actual error estimates are much better than
that obtained in (15).

ε 1 .5 .25 .1
K 16 16 16 16
M 5 7 13 31
N 350487354645.16×109 7.97×1020

(16)
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3 Autocorrelations as sums of triangles

3.1 The construction of sequences with triangular autocorrelation

In this section a generalization of (3), the autocorrelation function of the sequence
given by (2), and of those constructed from Hadamard matrices in Section 2.3 and
also in [8] is given.

Theorem 8.Given M∈ N and K> 0. Let A: Z→R be defined by

A[k] =

{
K
(

1− |k|
M

)
if 0≤ |k| ≤ M,

0 otherwise.
(17)

Then there exists a constructible sequence x: Z→ R with constant amplitude
√

K
whose autocorrelation, Ax, is A.

Proof. (i) As mentioned in Section 1.2 one can deterministically construct a uni-
modular sequencey onZ whose autocorrelation is

Ay[k] =

{
0 if k 6= 0,
1 if k= 0,

(18)

and we use (18) at the end of the proof. Wiener’s construction[34] of y is as follows.
On the positive integers lety take values in the following order:
[1,−1] (this row has 1·21 elements and is repeated 20 = 1 time);
[1,1;1,−1;−1,1;−1,−1] (this row has 2· 22 elements and is repeated 21 = 2
times);
[1,1,1;1,1,−1;1,−1,1;1,−1,−1;−1,1,1;−1,1,−1;
−1,−1,1;−1,−1,−1] (this row has 3·23 elements and is repeated 22 = 4 times);
etc. Thus,y[1] = 1,y[2] = −1,y[3] = 1,y[4] = 1, . . . . In addition, lety[0] = 1, and,
for k∈ N, let y[−k] = y[k].

(ii) We define the functionx : Z→C by x[k] =
√

Ky[⌈ k
M ⌉], where⌈.⌉ denotes the

next largest integer. Note that|x|=
√

K.
We show that the autocorrelationAx of x is A as defined in (17). Sincex is a real

sequence, the autocorrelation function is even, and so it isenough to prove the result
for k> 0. Let 0≤ Mp≤ k≤ M(p+1) for somep∈N∪{0}. For any given integer
N, let nN be the smallest integer such thatN < M(nN +1). Then we have

Ax[k] = lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]x[m]

= lim
N→∞

1
2N+1

MnN

∑
m=−MnN

x[k+m]x[m]+ lim
N→∞

1
2N+1 ∑

MnN<|m|≤N

x[m+ k]x[m]

= lim
N→∞

(S1,N(k)+S2,N(k)) = S1(k)+S2(k). (19)
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First, we calculate bounds onS2,N(k).

|S2,N(k)| =
∣∣∣∣∣

1
2N+1 ∑

MnN<|m|≤N

x[m+ k]x[m]

∣∣∣∣∣

≤ 1
2N+1 ∑

MnN<|m|≤N

|x[m+ k]x[m]|= K
2N+1 ∑

MnN<|m|≤N

1=
2K(N−MnN)

2N+1
.

We know from the definition ofnN thatN−MnN < M. Therefore,S2(k) = 0. Con-
sequently,Ax[k] = limN→∞ S1,N(k) = S1(k). Next, we write

S1(k) = lim
N→∞

1
2N+1

MnN

∑
m=−MnN

x[k+m]x[m]

= lim
N→∞

1
2N+1

nN−1

∑
n=−nN

M(n+1)

∑
m=Mn+1

x[k+m]x[m]+ lim
N→∞

1
2N+1

x[−nN+ k]x[−nN].

(20)

Sincex has the same value
√

Ky[n+1] for all the integersm∈ [Mn+1,M(n+1)],
one can replace thex[m] in the first term of the right side of (20) by

√
Ky[n+ 1].

Since the second term of the right side of (20) is 0 this implies

S1(k) = lim
N→∞

1
2N+1

nN−1

∑
n=−nN

M(n+1)

∑
m=Mn+1

x[m+ k]
√

Ky[n+1]

= lim
N→∞

1
2N+1

(
nN−1

∑
n=−nN

Mn+M(p+1)−k

∑
m=Mn+1

x[m+ k]
√

Ky[n+1]

+
nN−1

∑
n=−nN

M(n+1)

∑
Mn+M(p+1)−k+1

x[m+ k]
√

Ky[n+1]

)

= lim
N→∞

K
2N+1

nN−1

∑
n=−nN

(
Mn+M(p+1)−k

∑
m=Mn+1

y[n+ p+1]y[n+1]

+
M(n+1)

∑
m=Mn+M(p+1)−k+1

y[n+ p+2]y[n+1]

)

= lim
N→∞

K
2N+1

nN−1

∑
n=−nN

(
(M(p+1)− k)y[n+ p+1]y[n+1]

+ (k−Mp)y[n+ p+2]y[n+1]
)
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= lim
N→∞

M(p+1)− k
2N+1

2nNK
2nN

nN−1

∑
n=−nN

y[n+ p+1]y[n+1]+

+ lim
N→∞

(k−Mp)
2N+1

2nNK
2nN

nN−1

∑
n=−nN

y[n+ p+2]y[n+1].

SincenN → ∞ asN → ∞, we have

lim
N→∞

S1,N(k) = lim
N→∞

M(p+1)− k
2N+1

2nNKAy[p]+ lim
N→∞

k−Mp
2N+1

2nNKAy[p+1]

= lim
N→∞

(
p+1− k

M

)
2nNM
2N+1

KAy[p] (21)

+ lim
N→∞

(
k
M

− p

)
2nNM
2N+1

KAy[p+1].

Note that

lim
N→∞

2nNM
2N+1

= 1. (22)

In fact, from the choice ofnN, we haveMnN ≤ N < M(nN +1) so that 2MnN+1≤
2N+1< 2M(nN +1)+1, and hence

2MnN

2M(nN +1)+1
<

2MnN

2N+1
≤ 2MnN

2MnN +1
.

nN goes to infinity asN goes to infinity and so taking limits throughout asN goes to
infinity we obtain (22).

Substituting (22) in (21) and using the fact thatS2(k) = 0, we obtain from (19)
that

Ax[k] = S1(k) = K

(
p+1− k

M

)
Ay[p]+K

(
k
M

− p

)
Ay[p+1].

If 0 ≤ k≤ M thenp= 0. For every other range ofk, p is non-zero. Using the values
of Ay[p] as given by (18) and the fact thatAx is an even function one obtains (17).
⊓⊔

Remark 1.The functionAdefined in Theorem 8 is the triangle△K,M(t)=K max(1−
|t|
M ,0) onR with heightK and base length 2M restricted to the integers. The Fourier

transform of△K,M(t) is KM
(

sinπMγ
πMγ

)2
. Thus in Theorem 8 we have constructed a

sequencex of constant amplitude whose autocorrelation is the inverseFourier trans-
form of the dilated Fejér functionKω2πM.
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3.2 The additive property of triangular autocorrelation a.e.

As mentioned in Section 1.2, and repeated in the proof of Theorem 8, it has been
shown in [34], [35] that ifλ ∈ (0,1) has binary expansion 0.α1α2α3 · · · , if we con-
sider the Lebesgue measure on(0,1), and if we define the unimodular (in fact,
±1-valued) functiony by

y[k] =

{
2α2n+1−1 if k= n+1,n∈ N∪{0},
2α2n−1 if k= 1−n,n∈ N,

then, foralmost allvalues ofλ , the autocorrelation ofy, Ay, is

Ay[k] =

{
0 if k 6= 0,
1 if k= 0.

In Theorem 8 it was shown that givenM ∈ N this y can be used to constructx such
thatx has constant amplitude and

Ax[k] =

{
1− |k|

M , if 0 ≤ |k| ≤ M,
0, otherwise.

In this case,x is unimodular. We shall now show that the autocorrelation ofthe sum
of two such functions is the sum of the respective autocorrelations for almost allx.

We begin with the following calculation.

Example 4.Let X be the set of unimodular functionsx : Z → C for which there
exists a positive integerM with the property,

Ax[k] =

{
1− |k|

M , if 0 ≤ |k| ≤ M,
0, otherwise.

For givenM ∈N let Ω be the set of all possibilities of any 2M consecutive values of
x∈ X. Then card(Ω) = 22M. Let E be the subset ofΩ such that givenε, the sum of
the 2M consecutive values ofx exceedsMε in absolute value. Among the 2M values
suppose that there are(M− j) +1s and(M+ j) −1s where−M ≤ j ≤ M. So the
absolute value of the sum of 2M consecutive values would be|M+ j − (M− j)| =
2| j|. The sum of these values exceedsMε in absolute value if[Mε] ≤ 2| j| ≤ 2M.
The number of ways of having(M − j) +1s and(M + j) −1s is

( 2M
M− j

)
=
( 2M

M+ j

)
.

The total number of possible values for which the sum exceedsMε is

card(E)=
M

∑
| j |=[Mε

2 ]

(
2M

M− j

)
=

M

∑
j=[Mε

2 ]

(
2M

M− j

)
+

M

∑
j=[Mε

2 ]

(
2M

M+ j

)
= 2

M

∑
j=[Mε

2 ]

(
2M

M− j

)
.

Consequently,
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card(E)
card(Ω)

= 2−2M2
M

∑
j=[Mε

2 ]

(
2M

M− j

)
= 2−2M+1

M

∑
j=[Mε

2 ]

(
2M

M− j

)
.

Theorem 9.(a) Let X be the set of unimodular functions x: Z→ C for which there
exists a positive integer M with the property,

Ax[k] =

{
1− |k|

M , if 0≤ |k| ≤ M,
0, otherwise.

Then there is a well defined finite Borel measure p on X induced from Lebesgue
measure1 on (0,1), in a manner described in the proof.
(b) For almost all x,y∈ X, with respect to p, we have

Ax+y = Ax+Ay,

noting that x+ y does not necessarily have constant amplitude and that Ax+y is not
generally a triangle.

Proof. (a) We know from (2) and (3) that there isS0 ⊆ [0,1] defined by the proper-
ties: |S0|= 1 and

∀λ ∈ S0, ∃µλ : Z→C such that|µλ |= 1 andAµλ [k] = δ0,k onZ.

From Theorem 8 we know that for eachM ∈ N, there isSM ⊆ [0,1] defined by the
properties:|SM|= 1 and

∀λ ∈ SM, ∃µλ : Z→ C such that|µλ |= 1 andAµλ [k] = max
(
0,1− |k|

M

)
onZ.

In fact, by the way we definedµλ in Theorem 8 we could takeSM = S0. However,
we can equally-well choose{SM : SM ⊆ S0, |SM| = 1} to be a disjoint collection
whose union isS0. In this case we define the functions,fM : SM → X, λ 7→ µλ ,

whereAµλ [k] = max
(
0,1− |k|

M

)
onZ, and f : S0 → X, λ 7→ fM(λ ) whenλ ∈ SM.

In this way we usef to define a compact topology onX induced fromS0 ⊆ [0,1],
and to define a bounded Borel measurep on X induced from Lebesgue measure on
[0,1].

We provide the technical properties ofp in part (b) of the proof.
(b) We have already seen the construction of suchx andy in Theorem 8. Formally,

1 For the necessary measure theory and definitions of Borel andLebesgue measure we refer to [7].
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Ax+y[k] = lim
N→∞

1
2N+1

N

∑
m=−N

(x+ y)[m+ k](x+ y)[m]

= lim
N→∞

1
2N+1

N

∑
m=−N

(x[m+ k]+ y[m+ k])(x[m]+ y[m])

= lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]x[m]+ lim
N→∞

1
2N+1

N

∑
m=−N

y[m+ k]y[m]+

+ lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]y[m]+ lim
N→∞

1
2N+1

N

∑
m=−N

y[m+ k]x[m]

= Ax(k)+Ay(k)+ lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]y[m]+

+ lim
N→∞

1
2N+1

N

∑
m=−N

y[m+ k]x[m]. (23)

Let us denote the last two terms on the right side of (23) byS3 andS4 respectively.
We want to show thatS3 = 0 andS4 = 0.

S3 = lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]y[m]. (24)

Without loss of generality we takey to be real-valued and so (24) becomes

S3 = lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]y[m]. (25)

Suppose that

Ax[k] =

{
1− |k|

M1
, if 0 ≤ |k| ≤ M1,

0, otherwise,

and

Ay[k] =

{
1− |k|

M2
, if 0 ≤ |k| ≤ M2,

0, otherwise.

Let PN be the largest integer so that

M2PN ≤ N ≤ M2(PN +1). (26)

ThenS3 can be written as
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S3 = lim
N→∞

1
2N+1

−M2PN−1

∑
m=−N

x[m+ k]y[m]+ lim
N→∞

1
2N+1

N

∑
m=M2PN+1

x[m+ k]y[m]+

+ lim
N→∞

1
2N+1

M2PN

∑
m=−M2PN

x[m+ k]y[m]. (27)

Let us denote the first two terms of (27) bys1 ands2, respectively. Now,

|s1| ≤
−M2PN−1

∑
m=−N

1= N−M2PN

and

|s2| ≤
N

∑
m=M2PN+1

1= N−M2PN.

From (26),
N−M2PN ≤ M2(PN +1)−M2PN = M2

which means|s1| ≤ M2 and|s2| ≤ M2. Therefore,

lim
N→∞

|s1|
2N+1

≤ lim
N→∞

M2

2N+1
= 0

and also

lim
N→∞

|s2|
2N+1

≤ lim
N→∞

M2

2N+1
= 0.

Thus,

S3 = lim
N→∞

1
2N+1

M2PN

∑
m=−M2PN

x[m+ k]y[m] (28)

= lim
N→∞

1
2N+1

PN−1

∑
n=−PN

M2(n+1)

∑
m=M2n+1

x[m+ k]y[m]+

+ lim
N→∞

1
2N+1

x[−M2PN+ k]y[−M2PN]

= lim
N→∞

1
2N+1

PN−1

∑
n=−PN

M2(n+1)

∑
m=M2n+1

x[m+ k]y[M2(n+1)]. (29)

The last step (29) follows due to the fact that by construction y is constant and equal
to either+1 or−1 in the interval[M2n+1,M2(n+1)]. Soy[M2(n+1)] is either+1
or−1. Between(M2n+1) andM2(n+1) there areM2 terms. So there areM2 values
of x. Suppose that of theseM2 values there arej that have the value+1 and(M2− j)
that have the value−1.Upon multiplication byy(M2(n+1)) we have eitherj values
that are−1 and(M2− j) values that are+1 or vice versa. In the sum on the right side
of (29) there are 2PN blocks of lengthM2. Let us say that the first block hasj1 terms
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equal to+1 and(M2− j1) terms equal to−1, the second block hasj2 terms equal to
+1 and(M2− j2) terms equal to−1 and so on. Together, there are( j1+ j2+ · · ·+
j2PN) terms equal to+1 and(M2− j1+M2− j2+ · · ·+M2− j2PN) = 2PNM2−( j1+
j2+ · · ·+ j2PN) terms equal to−1. Let PNM2 = M and j1+ j2+ · · ·+ j2PN = M− j
where−M ≤ j ≤ M. Note that thisM is unrelated to theM that appears in Theorem
8 and part (a) of the statement of this theorem where it indicates the length of the
base of a triangle. Then 2PNM2 − ( j1+ j2 + · · ·+ j2PN) = 2M − (M− j) = M+ j.
Thus, out of 2M consecutive values ofx[m+k]y[m] there are(M− j) values that are
+1 and(M+ j) values that are−1.So the absolute value of the sum of 2PNM2 = 2M
consecutive values ofx[m+ k]y[m] would beM+ j − (M− j) = 2| j|.

Let Ω be the set of all possibilities for the 2M consecutive values ofx[m+k]y[m].
From (2), each suchx andy corresponds to someλ ∈ (0,1). From Example 4 and
the definition ofE ⊆Ω there, it follows that givenε the measure of the set for which
the sum of 2M consecutive values exceedsMε in absolute value is

card(E)
card(Ω)

= 2−2M+1
M

∑
j=[Mε

2 ]

(
2M

M− j

)
.

This can be transported as an explicit, computable propertyof p.
It can be shown in a manner identical to that in [34] that

lim
M→∞

2−2M+1
M

∑
j=[Mε

2 ]

(
2M

M− j

)
= 0.

Thus the set ofx andy for which there should fail to be an integral value ofM =
PNM2 such that from that value on (see (28))

∣∣∣
M

∑
m=−M

x[m+ k]y[m]
∣∣∣≤ Mε +1

has measure zero. Therefore,

limN→∞

∣∣∣ 1
2N+1

M

∑
m=−M

x[m+ k]y[m]
∣∣∣≤ Mε +1

2N+1
=

PNM2ε
2N+1

+
1

2N+1
. (30)

From (26),
PNM2

2N+1
≤ N

2N+1
→ 1

2

asN goes to infinity. So, the left side of (30) is less thanε
2 and for almost allx and

y,

lim
N→∞

1
2N+1

N

∑
m=−N

x[m+ k]y[m] = 0.

In a similar way one can show that
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S4 = lim
N→∞

1
2N+1

N

∑
m=−N

y[m+ k]x[m] = 0

for almost everyx andy. This concludes proving part (b).⊓⊔
Remark 2.Due to Theorem 8, Theorem 9 can be trivially generalized tox andy that
have constant amplitudeK1 andK2 respectively and have autocorrelation functions

Ax[k] =

{
K1

(
1− |k|

M1

)
, if 0 ≤ |k| ≤ M1,

0, otherwise,

and

Ay[k] =

{
K2

(
1− |k|

M2

)
, if 0 ≤ |k| ≤ M2,

0, otherwise.

Remark 3.GivenK > 0 andM ∈N, onR, the inverse Fourier transform ofMK
(

sinπMγ
πMγ

)2

is K max
(

1− |t|
M ,0

)
. By the additive property of Fourier transform, the inverse

Fourier transform ofF(γ) = ∑N
n=1nKn

(
sinπnγ

πnγ

)2
, restricted toZ, is

F̌ [m] =
N

∑
n=1

Kn max(1− |m|
n

,0).

Due to Theorem 8, one can construct functionsxn such thatAxn = Knmax(1− |m|
n ,0)

with |xn| =
√

Kn. Theorem 9 implies that the sequencex= x1+ · · ·+ xN has auto-
correlationF̌ . Also, x ∈ ℓ∞(Z) since|x| is bounded by∑N

n=1
√

Kn. Thus we have a
functionx∈ ℓ∞(Z) whose autocorrelation is the inverse Fourier transform of dilates
of Fejér functions.

Example 5.Generally,Ax+y[k] 6= Ax[k] +Ay[k]. In fact, in the case of real-valued
sequencesx,y ∈ ℓ∞(Z), when all limits asN → ∞ exist,Ax+y[k] = Ax[k]+Ay[k]+
2Axy[−k], and there is no reason to expectAxy[−k] = 0 for eachk∈ Z. Here,Axy is
the cross-correlation ofx andy defined by

∀k∈ Z, Axy[k] = lim
N→∞

1
2N+1

N

∑
m=−N

x[k+m]y[m].

As a particular example, note that the binary expansions, with a precision of 16
bit, of λx= 0.35 andλy= 0.9 are 0.01011001100110011and 0.1110011001100110,
respectively. From these one can obtain sequencesx and y of ±1s by following
the definition ofy in (2). The partial autocorrelations ofx, y, andx+ y have been
calculated by computing the sum in Definition 1 forN = 1000, i.e., 2N+1= 2001
terms. These partial autocorrelations at the integers between−10 and 10 are plotted
in Figure 3. Clearly, the sums of the autocorrelations ofx andy do not match the
autocorrelation ofx+ y.
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Fig. 3 Autocorrelations of two sequencesx andy and their sum

4 Conclusions

In this chapter Hadamard matrices have been used to construct constant amplitude
zero autocorrelation (CAZAC) sequences onZ. Such sequences are important in
the areas of radar and communication. This is generalized tothe construction of
unimodular sequences onZ whose autocorrelations are triangles. Finally, conditions
under which the autocorrelation of the sum of two sequences is the same as the sum
of the respective autocorrelations are studied.
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