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Abstract

Sets of signals that meet Welch bounds with equality or near equality
are of value in communications and sensing applications, and the con-
struction of such signal sets has been an active research area. Although
Welch derived a family of bounds indexed by positive integers k, only
the first Welch bound (i.e., for k = 1) has been considered in these con-
structions. Earlier, a frame-theoretic perspective was introduced on the
higher Welch bounds that is valuable in constructing signals that simul-
taneously meet multiple Welch bounds with equality or near equality.
This perspective is used in this paper to examine the existence of sig-

nal sets that meet the kth Welch bound with equality by using second
order Reed-Muller codes. Some examples of such signal sets are pre-
sented and connections to equiangular lines and t-designs are discussed.

Keywords: Delsarte-Goethals sets, Reed-Muller codes, mutually unbiased
bases, t-designs, tight frames, Welch bound

1 Introduction

Welch’s bounds [1] apply to sets X = {x1, . . . , xm} of unit-norm vectors in Cn.
Denoting by 〈xi, xj〉 the inner product of xi and xj , the fundamental bound
in [1] gives

m∑
i=1

m∑
j=1

| 〈xi, xj〉 |2k>
m2(

n+k−1
k

) (1)

1
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for each integer k ≥ 1. Since the xi have unit norm, (1) is equivalent to

∑
i 6=j

| 〈xi, xj〉 |2k>
m2(

n+k−1
k

) −m. (2)

It can be shown that the inequality is satisfied with equality if and only if X
is a tight frame for Cn with bound B = m/n (see, e.g., [2–4]).

Continuing with the case k = 1, Welch also noted that, since terms in the
sum on the left side of (2) are non-negative, the sum must be at least as large
as the number of terms times the largest term; i.e.,

c2max := max
i 6=j
| 〈xi, xj〉 |2>

1

m− 1

[m
n
− 1
]
. (3)

Meeting this bound with equality requires not only that X is a tight frame for
Cn, but that all the inner products 〈xi, xj〉 with i 6= j are equal in magnitude;
i.e, that X is a set of equiangular lines in Cn [3, Theorem 2.3].

A signal set X ⊂ Cn that meets inequality (1) with equality is known as a
Welch Bound Equality (WBE) set [5–7]. In the literature, WBE sets are also
referred to as Grassmannian frames [3]. X meets inequality (3) with equality
if and only if X is an equiangular tight frame (ETF) [3, Theorem 2.3]. Such
sets are called Maximal Welch Bound Equality (MWBE) sets [5–7] or optimal
Grassmannian frames [3], or two-uniform frames [8]. Sets attaining the bound
in (1) or (3) with equality are of value in communications and active sensing
applications, and construction of such sets for the k = 1 case has been an
active research area [3, 5–7, 9].

In [10], the authors formulated a geometric perspective on the higher Welch
bounds; i.e., (1) and the analogue of (3) with k ≥ 2 which takes the form

c2kmax >
1

m− 1

[
m(

n+k−1
k

) − 1

]
. (4)

The central goal of this paper is to exploit this perspective to examine the
existence and construction of signal sets in Cn that meet these higher bounds
with equality. To seek such sets, we study second order Reed-Muller codes and
special subspaces of these codes, namely, the Kerdock and Delsarte-Goethals
sets. Our investigation yields results and examples for k ≤ 3; obtaining sets
with equality for k > 2 is a challenging problem. We will refer to a set that
meets inequality (1) with equality as a WBE set whereas a set that meets (3)
with equality will be referred to as an ETF. For k > 1, a set that meets (4)
with equality will be called a k-ETF. In situations where k ≥ 1, 1-ETF will
be the usual meaning of an ETF.

The geometric perspective used to formulate the higher order Welch bounds
in [10] relies on the space of symmetric tensors, Symk(Cn). The dimension of
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Symk(Cn) is denoted by d(n, k). Note that

d(n, k) =

(
n+ k − 1

k

)
,

and the inner product in Symk(Cn) is defined by

〈x⊗ki , x⊗kj 〉 := 〈xi, xj〉k.

In [10, Theorem 3.1] it is shown that the set X⊗k = {x⊗k1 , . . . , x⊗km } satisfies
(1) with equality if and only if it is a tight frame for Symk(Cn) and satisfies (4)
with equality if and only if X⊗k is an equiangular tight frame of Symk(Cn).
Combining this with a result in [2, Theorem 1] gives

Theorem 1 The following are equivalent:

1. X is a complex projective t-design in Cn.

2. X⊗k is a WBE set for k = 1, . . . , t.

3. X⊗k is a tight frame for Symk(Cn) for k = 1, . . . , t with frame bound m
d(n,k)

.

2 k-ETFs

Suppose X is an ETF in Cn. Certain necessary conditions for a set to be a
k-ETF for k > 1, i.e., attain equality in (4), can be obtained purely from
dimensionality conditions. This is given below in Theorem 2.

Theorem 2 Let X = {x1, . . . , xm} be an ETF in Cn. Then
(a) X⊗k is a set of equiangular lines in Symk(Cn) for all k > 1.
(b) If X⊗k is a k-ETF for k > 1, then d(n, k) ≤ m ≤ n2 where d(n, k) is the
dimension of Symk(Cn).

Proof (a) Let GX = [〈xi, xj〉]1≤i,j≤m be the Gram matrix of X. Then GX will have
ones on the main diagonal and all off-diagonal entries will be of equal modulus; i.e.,
|
〈
xi, xj

〉
|= α for all i 6= j. The Gram matrix associated with X⊗k in Symk(Cn) is

GX⊗k =


1 · · ·

〈
x⊗k1 , x⊗km

〉
...

. . .
...〈

x⊗km , x⊗k1

〉
· · · 1

 =


1k · · · 〈x1, xm〉k
...

. . .
...

〈xm, x1〉k · · · 1k

 .
Hence GX⊗k has ones on the main diagonal and all off-diagonal entries of modulus

αk. So X⊗k is a set of equiangular lines in Symk(Cn).
(b) If X⊗k is a k-ETF for k > 1, then X⊗k is an equiangular tight frame of Symk(Cn)
[10, Theorem 3.1]. In order to be a frame, it must span Symk(Cn). Thus, based on
dimensionality, it is necessary that m ≥ d(n, k).
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Table 1 Feasibility of k and dimension n for k-ETFs by Theorem 2

n 2 3 4 · · ·
k
1 X X X X
2 X X X X
3 X X X X
4 X X X X

Recall that the maximal number of equiangular vectors in Cn cannot exceed n2

([11, 12]). Thus, to obtain k-ETFs by taking tensor products of a certain equiangular
tight frame X in Cn, it is necessary that m ≤ n2.

�

Remark 1 In Theorem 2 (b), the dimensionality condition is not sufficient for being
a k-ETF for the following reason. If m ≥ d(n, k) and the rank of GX⊗k is d(n, k),

then X⊗k is a frame for Symk(Cn). Part (a) shows that X⊗k is an equiangular set.
However, this frame may not be tight. Even if X is a tight frame for Cn, X⊗k need
not be a tight frame for Symk(Cn). There are techniques to get a tight frame from a

frame. For example, the set {(F(k))−
1
2 x⊗kj }

m
j=1, where F(k) is the frame operator1

of X⊗k, is a tight frame in Symk(Cn); however, the equiangularity of X⊗k is not
preserved by this operation.

Example 1 For a given n, Theorem 2 requires that

d(n, k) =

(
n+ k − 1

k

)
≤ n2.

Take n = 2. Then

d(2, k) =

(
2 + k − 1

k

)
= k + 1 ≤ 4,

i.e., k ≤ 3 must hold. When n = 3, it is required that

d(3, k) =

(
3 + k − 1

k

)
=

(k + 1)(k + 2)

2
≤ 9.

However, there is no k > 2 for which this is satisfied. Similarly, for n = 4, the

condition d(n, k) ≤ n2 implies
(k+1)(k+2)(k+3)

6 ≤ 16, and there is no k > 2 for which
this holds. For any n > 4, writing d(n, k) as

d(n, k) =

(
n+ k − 1

k

)
= n · n+ 1

2
· n+ 2

3
· · · n+ k − 1

k
,

it can be seen that d(n, k) ≤ n2 is satisfied only for k = 1 and k = 2. The feasibility
of some pairs (k, n) by Theorem 2 (b), as calculated above, is shown in Table 1.

1Given a finite frame X = {x1, ..., xm} for an n-dimensional complex vector space V , the

function F : V → Cm given by F (w) = [〈x1, w〉 . . . 〈xm, w〉]T will be called the analysis operator
associated with X, while F = F∗F : V → V (i.e., the composition of the adjoint of F with F )
will be called the frame operator associated with X.
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Remark 2 For k > 1, Theorem 2 depends on a starting 1-ETF, i.e., an ETF of m
vectors in Cn. Pairs (m,n) for which ETFs of m vectors can exist in Cn, and the
required conditions along with examples are discussed in [8, 13, 14] from where it
is also known that ETFs are rare. One should note that due to the inner product
property of Symk(Cn), if ETFs do not exist for a certain pair (m,n) then k-ETFs of
such cardinalities m also cannot exist for k > 1. Example 1 shows that even if there
is a 1-ETF X, one cannot reasonably extend this to k-ETFs for k’s greater than 2
by taking X⊗k. These are some of the issues faced in the construction of k-ETFs or
sets that meet the higher bounds in (4).

Example 2 (A k-ETF for k = 1, 2) Maximal equiangular sets in Cn of n2 unit vectors
satisfying the Welch bound (3), i.e., | 〈xi, xj〉 |2= 1

n+1 , i 6= j, are called symmet-
ric informationally complete positive operator valued measures (SIC-POVMs). This
means that SIC-POVMs are ETFs. SIC-POVMs are conjectured to exist for all n.
The analytical proof for the existence of SIC-POVMs in any arbitrary dimension
remains an open problem. Analytic solutions for the existence of SIC-POVMs exist
for some dimensions [15–18]. Numerical solutions of SIC-POVMs for many dimen-
sions are currently available [15, 17, 19]. It has been shown in [15, Theorem 2] and
[2, Theorem 5] that SIC-POVMs form complex projective 2-designs. By Theorem 1,
these are WBE sets for k = 1, 2. Further, due to the equiangularity of SIC-POVMs,
these form k-ETFs for k = 1, 2. From the inner product property of these sets, this
can also be shown through a direct calculation by showing that SIC-POVMs satisfy
(4) for k = 1 and k = 2, and hence form k-ETFs for k = 1, 2.

3 Higher WBE sets using Delsarte-Goethals
sets

Consider the space of ` dimensional binary vectors Z`
2, also called the Hamming

space. The second order Reed-Muller code of length 2` is parameterized by
` × ` binary symmetric matrices P and binary vectors b ∈ Z`

2. Let dP denote
the main diagonal of a matrix P, and by wt(dP ) we will mean the number of
ones in the binary vector dP . In terms of the parameters P and b, a second
order Reed-Muller codeword is given by

φP,b(a) =
1√
2`
iwt(dP )+2wt(b)i(2b+Pa)T a (5)

where i =
√
−1. In the above expression (5), a ∈ Z`

2 indexes the 2` components
of the codeword φP,b. For a fixed binary symmetric matrix P, the set

FP = {φP,b : b ∈ Z`
2}

forms an orthonormal basis for C2`

. For a fixed `, the total number of sym-
metric matrices is 2`(`+1)/2. These give a set of 2`(`+1)/2 orthonormal bases for

C2`

. For each P, the vectors of the set FP can be used as rows (or columns)
to form a 2` × 2` unitary matrix UP . By concatenating the matrices UPi

,
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i = 1, . . . , 2`(`+1)/2, one obtains the 2` × 2`(`+3)/2 matrix

Φ =
[
UP1

UP2
. . . UP

2`(`+1)/2

]
(6)

whose columns are the Reed-Muller codewords of length 2`. The following
Lemma 3 follows directly from Lemma 7 and Theorem 1.

Lemma 3 (i) The columns of Φ form a WBE set of 2`(`+3)/2 vectors in C2`

for
k = 1.
(ii) Let N be an integer such that 1 ≤ N ≤ 2`(`+1)/2. Then ∪Nn=1UPin

, where

in ∈ {1, 2, . . . , 2`(`+1)/2}, is a WBE set of N2` vectors in C2`

for k = 1.

Let ` be an odd number. The Delsarte-Goethals set DG(`, h) is a binary
vector space containing 2`(h+1) binary symmetric matrices of size ` × ` with
the property that for any distinct pair P, Q in DG(`, h), the rank of the binary
sum P +Q is at least `− 2h [20, 21]. The Delsarte-Goethals sets are nested

DG(`, 0) ⊂ DG(`, 1) ⊂ · · · ⊂ D(`,
`− 1

2
).

The set DG(`, 0) is the classical Kerdock set [22]. The size of the Kerdock set
is 2`. The last set DG(`, `−1

2 ) is the set of all binary symmetric `× ` matrices
and this gives the entire second order Reed-Muller code.

Due to orthonormality, the inner product between two different columns
of the same matrix UPi is zero. Fixing a vector vi which is the column of a
certain matrix UPi and letting another vector vj range over the columns of a
different matrix UPj , the inner product satisfies [21, 23]

| 〈vi, vj〉 |=
{ 1√

2r
, 2r times,

0, 2` − 2r times,
(7)

where r = rank(Pi − Pj).
Theorem 4 below shows that the Kerdock set gives rise to WBE sets for k =
1, 2. The following definition is needed in Theorem 4 .

Definition 1 Two orthonormal bases B and B′ of Cn are said to be mutually
unbiased when |

〈
b, b′

〉
|2= 1/n holds for all b ∈ B and b′ ∈ B′.

Theorem 4 For Pik ∈ DG(`, 0), 1 ≤ k ≤ 2`, consider

ΦKer =
[
UPi1

UPi2
· · · UPi

2`
I2`

]
where I2` is the 2`×2` identity matrix. For k = 1, 2 in (1), the columns of ΦKer form

a WBE set of 2`(2` + 1) vectors in C2`

, and Φ⊗2
Ker is a tight frame for Sym2(C2`

).
However, this is not a k-ETF for k = 1, 2.
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Table 2 Feasibility of the Kerdock set in generating a spanning set for Symk(C2` )

k dim(Symk(C2` )) Set size (m) Feasible?

1 2` 2`(2` + 1) Yes, for all `.

2
2`(2`+1)

2
2`(2` + 1) Yes, for all `.

3
2`(2`+1)(2`+2)

6
2`(2` + 1) Only for ` ≤ 2.

Proof We know that for any two matrices P and Q in DG(`, 0), rank(P − Q) =
`. The inner product given in (7) then implies that any two vectors coming from
columns of distinct UPi

s in ΦKer have inner product equal to 1√
2`

in modulus. Due

to orthonormality, the modulus of the inner product between two different columns
of the same matrix UPi

or I2` is zero. From (5), it follows that the modulus of the
inner product between any column of I2m and a column of an UPi

is 1√
2`
.

Recall that the columns of ΦKer are vectors in C2`

, and that the columns of each

UPi
as well as I2` form an orthonormal basis of C2`

. The inner product property

thus shows that the set of columns of ΦKer is the union of 2` + 1 mutually unbiased

bases in C2`

. From [2, Theorem 3], the columns of ΦKer form a complex projective
2-design. By Theorem 1, this is a WBE set for k = 1, 2, and Φ⊗2

Ker is a tight frame

for Sym2(C2`

). Since the set is not equiangular, it is not a k-ETF for k = 1, 2. �

The proof of Theorem 4 gives rise to the following.

Corollary 5 The bases {UPi1
, UPi2

, · · · , UPi
2`
, I2`} form a maximal set of 2` + 1

mutually unbiased bases in C2`

.

It is noteworthy that the construction of maximal MUBs in C2`

from Kerdock
sets is mentioned in [24] (see Proposition 2.8 therein).

Even though the Kerdock set gives 2-designs and hence WBE sets for
k = 1, 2, it is not feasible to extend these for values of k higher than 2 due to
insufficient vectors; the number of vectors falls below d(n, k) when ` > 2 for
k > 2. This is shown in Table 2. If we increase the set size beyond the Kerdock
set by considering, say, DG(m, 1), then one might hope that the corresponding
Φ in Theorem 4 will yield WBE sets for k > 2. Unfortunately, this is not the
case; see Example 3 below.

Example 3 Let ` = 3. The set DG(3, 1) has 2`(r+1) = 23·(1+1) = 64 matrices, and
hence accounts for all binary symmetric 3× 3 matrices. Thus DG(3, 1) corresponds
to the second order Reed-Muller code of size 23. The columns of the matrix

Φ1 =
[
UP1

· · · UP64

]
form a tight frame of 23 × 64 = 512 vectors in C8, and hence a WBE set for k = 1.
However, they do not form a WBE set for k = 2 or for k = 3. This can be verified
by using Matlab to compute the sum on the left side of (1). The same is true when
the identity matrix is concatenated to Φ1, i.e., the columns of the matrix

Φ2 =
[
UP1

· · · UP64
I8
]
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form a WBE set of 512 + 8 = 520 vectors in C8 for k = 1, but they do not form a
WBE set for k = 2 or for k = 3.

Example 4 An ubiqutous tool in quantum information theory is the stabilizer for-
malism, which was originally invented to describe quantum error correcting codes.
Stabilizer states are joint eigenvectors of generalized Pauli matrices [25]. It has been
shown in [25, Corollary 1] that the set of all `-qubit (quantum bit) stabilizer states
forms a complex projective 3-design in dimension 2` for all ` ∈ N. By Theorem 1,

this therefore provides a source of WBE sets in C2`

for k = 1, 2, 3.

As mentioned above and shown in Table 2, for a given `, the Kerdock set will

not generate enough vectors to span Symk(C2`

) when k > 2. Example 3 shows
that increasing the number of vectors by considering DG(`, h), 1 ≤ h ≤ `−1

2 ,

may generate enough vectors to span Symk(C2`

), however, the resulting set
may not be a WBE set for k > 2. For a WBE set of m vectors in Cn, one has∑m

i=1

∑m
j=1 | 〈xi, xj〉 |2k

m2

(n+k−1
k )

= 1. (8)

When considering DG(`, h) with h ≥ 1, if equality is not attained in (1), it
seems natural to ask how close one can get to attaining equality, i.e., how much
the ratio in the left side of (8) diverges from 1. For h = 1, an upper bound for
this ratio can be calculated and is given below in Proposition 6.

Proposition 6 Consider the set DG(`, 1), and let UP denote the resulting unitary
matrix coming from a P in DG(`, 1). Analogous to (6), denote by Φ the concatenation
of the matrices UP . Then Φ can be written as

Φ =
[
UP1

UP2
· · · UP

2`
UP

2`+1
· · · UP

22`

]
. (9)

Denoting the jth column of Φ by xj and the total number of columns by m,

1 ≤
∑m

i=1

∑m
j=1 |

〈
xi, xj

〉
|2k

m2

(2
`+k−1

k )

≤ 2`(2` + 1) · · · (2` + k − 1)

k!23`

[
1 +

2` − 1

2`k
+

23` − 2`+1 + 1

2`k
22k

]
.

(10)

Proof Since DG(`, h) has 2`(h+1) matrices [21], DG(`, 1) has 22` matrices. Assume

that the matrices {UPi
}2

2`

i=1 are arranged in such a way that the first 2` matrices

Pi belong to the Kerdock set or DG(`, 0). The remaining matrices, i.e., {Pi}2
2`

i=2`+1
belong to DG(`, 1) \DG(`, 0). This gives Φ the structure in (9).

The 22` matrices P in DG(`, 1) give vectors in C2`

by (5). Each unitary matrix
UPi

being 2` × 2`, this implies that the total number of columns in Φ is

m = 2`22` = 23`.
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To obtain (10), we next look at the distinct possibilities of inner products coming
from the columns of Φ.

(i) By construction, each column of Φ has unit norm. Thus the total number of
inner products that equal one is m = 23`.

(ii) The columns of {UP1
, . . . , UP

2`
} form a set of 2` mutually unbiased bases; see

Corollary 5. The inner product of columns coming from different bases is 1√
2`
.

The total number of inner products involving vectors of different bases is

(2` − 1)2`2`2` = (2` − 1)23`.

(iii) The inner product of columns within the same basis is zero. There are 22` bases.
For each basis there are (2`)2 − 2` inner products that are zero.

(iv) Due to (7), the inner products not accounted for in (i) - (iii) will be bounded
above by 1√

2`−2
.

The total number of inner products not accounted for in (i) - (iii) is

m2 −
[
m+ (2` − 1)23` + 23`(2` − 1)

]
= 26` − 2 · 24` + 23`.

From (i) - (iv), we have

m∑
i=1

m∑
j=1

| 〈xi, xj〉 |2k ≤ m+ 23`(2` − 1)

(
1√
2`

)2k

+ (26` − 2 · 24` + 23`)

(
1√

2`−2

)2k

= 23`
[
1 + (2` − 1)2−`k + (23` − 2`+1 + 1)2−k(`−2)

]
. (11)

The Welch bound from (1) is

m2(n+k−1
k

) =
26`(2`+k−1
k

) . (12)

Taking the ratio of the right sides of (11) and (12) gives (10) after some
simplification.

�

4 Frame properties of sets constructed from
second order Reed-Muller codes

As mentioned in Sections 1 and 2, to get a k-ETF one needs an ETF, and
these are known to be rare [13]. In an ETF, the inner product between any two
distinct vectors takes only one value in modulus. In this section, the number of
distinct inner products (in moduli) between vectors in sets obtained from the
second order Reed-Muller code is investigated, see Theorem 8. In the process,
some frame properties of the vectors that form the second order Reed-Muller
code are discussed. The reader is referred to [26] for details on frame theory.

Lemma 7 Consider the matrix Φ =
[
UP1

UP2
. . . UP

2`(`+1)/2

]
introduced in (6).

(i) The columns of Φ form a unit norm tight frame for C2`

with frame bound

2`(`+1)/2.
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(ii) Let N be an integer such that 1 ≤ N ≤ 2`(`+1)/2. Then ∪Nn=1UPin
, where

in ∈ {1, 2, . . . , 2`(`+1)/2}, is a unit norm tight frame of N2` vectors in C2`

with
bound N.

Proof (i) Each matrix UPi
appearing in Φ is an orthonormal basis of C2`

. Recall
that an orthonormal basis is a tight frame with frame bound equal to one. Also, if
Φ1 and Φ2 are two tight frames with frame bounds A1 and A2, respectively, then
their union is also a tight frame with frame bound equal to A1 + A2. The columns
of Φ is the union of 2`(`+1)/2 orthonormal bases and hence form a unit norm tight
frame with bound equal to 2`(`+1)/2.
The proof of (ii) is identical to that of (i) by considering a subset of the UP matrices.

�

The tightness of the frames given in Lemma 7 is not preserved when

extended to Symk(C2`

), by taking tensor powers of the columns. This is exhib-
ited in Example 3 by keeping in mind the equivalence of tight frames and
WBE sets (see Theorem 1). The columns of Φ are not equiangular and hence
these do not give a k-ETF (k ≥ 1) even though they form a WBE set; see the
text immediately before Theorem 1 and Example 2, as well as Lemma 3. By
considering vectors associated with the DG(`, h) sets (see Section 3), one can
restrict the number of distinct inner products among vectors by considering a
lower value of h. This is shown in Theorem 8 below.

Theorem 8 Let ` be an odd positive integer.
(i) For Pik ∈ DG(`, 0), 1 ≤ k ≤ 2`, consider

ΦKer =
[
UPi1

UPi2
· · · UPi

2`

]
.

The columns of ΦKer form a unit norm tight frame with two distinct inner product
in moduli among distinct vectors.
(ii) If the domain of P is DG(`, h) then the columns of the matrix obtained by
concatenating the unitary matrices {UP }P∈DG(`,h) form a unit norm tight frame

with 2h+ 2 distinct inner products in modulus, where 0 ≤ h ≤ `−1
2 .

(iii) The unit norm tight frame in (i) of Lemma 7 has `+ 1 distinct inner products
in modulus.

Proof From Lemma 7, it follows that the columns form a unit norm tight frame in
each case. We just have to count the number of distinct inner products, and this can
be done using (7).
(i) When the P matrices come from DG(`, 0) then by (7), the inner product between
distinct vectors is either 0 or 1√

2`
.

(ii) Let the domain of P be DG(`, h), 0 ≤ h ≤ `−1
2 . Recall that the rank of

the difference between any two matrices in DG(`, h) is at least ` − 2h. Then, by
(7), the set of possible inner product values in modulus for distinct vectors is

{0, 2−`/2, 2−(`−1)/2, . . . , 2−(`−2h)/2}. Thus there are 2h+ 2 distinct inner products
in modulus.
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(iii) For the tight frame in (i) of Lemma 7, the domain of P is the entire DG set,
i.e., DG(`, `−1

2 ). By setting h = `−1
2 in (ii) of this proof, we conclude that there are

`+ 1 distinct inner products in modulus. �

Remark 3 As discussed in [27], one can expect reasonably low coherence from tight
frames if the number of distinct inner products in modulus can be restricted, provided
that each inner product modulus arises the same number of times. In the absence of
ETFs, unit norm tight frames with restricted number of inner products can be used
to optimize the coherence among vectors in a frame.

Remark 4 In some applications, it is useful to use frames or vectors that are binary
valued. In this regard, consider the vectors given by (5). If we only consider P
matrices that have zero diagonal and ignore the normalization factor 1√

2`
, then the

components of the vectors φP,b in (5) are all ±1. This allows us to get frames of
binary vectors that have restricted number of angles. The codes obtained under
these assumptions are the same as would be obtained by generating complex codes
of length 2`−1 and applying the Gray map [20].
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