
Equiangular frames and their duals

Somantika Datta

Abstract Systems of m equiangular lines spanning Rd or Cd that satisfy the so
called Welch bound have recently gained a lot of attention due to various applica-
tions in signal processing. Such sets are called equiangular tight frames (ETFs).
One of the geometrically appealing aspects of an ETF is that any vector can be rep-
resented in terms of an ETF by using a dual frame that is also an equiangular set.
However, for a given m and d, with m > d +1, ETFs are rare. Here we study some
properties of equiangular lines spanning Rd when the Welch bound is not met. Such
equiangular sets are more common than ETFs. In this case, the properties of the
canonical dual, in particular, the angle set of the canonical dual are studied. We de-
termine conditions on equiangular lines spanning Rd whose canonical dual has few
distinct angles.
Keywords Equiangular frames, k-angle frames, Signature matrices, Welch bound

1 Introduction

Given a set { fi}m
i=1 of m unit vectors in Cd , with m > d, the lower bound on the

maximum cross correlation between distinct vectors is given by

max
i̸= j

|⟨ fi, f j⟩|2 ≥
m−d

d(m−1)
. (1)

The quantity on the right of (1) is known as the Welch bound after L. R. Welch who
gave a family of bounds [29] parametrized by integers k ≥ 1 as follows.
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max
i̸= j

|⟨ fi, f j⟩|2k ≥ 1
m−1

[
m(d+k−1
k

) −1

]
. (2)

Welch obtained the bounds in (2) as a consequence of the following inequality

m

∑
i=1

m

∑
j=1

|⟨ fi, f j⟩|2k ≥ m2(d+k−1
k

) ,
and often this is referred to as the Welch bound. The special case of k = 1 which
is given in (1) has gained a lot of attention among researchers mainly in regard
to the study of sets that attain the lower bound. Sets that attain the lower bound
in (1), often called Welch bound equality sets, arise in various application areas
such as communication systems, quantum information processing, and coding the-
ory [18, 21, 23, 30, 16, 19, 22, 20, 14]. In a purely mathematical setting, sets that
attain the lower bound in (1) are objects called equiangular tight frames (ETFs) .
Consequently, the problem of constructing ETFs and determining conditions under
which they exist has gained substantial attention [23, 24, 15, 26, 2, 1, 28, 11].

The definition of a frame originates from work by Duffin and Schaeffer on non-
harmonic Fourier series [10]. In general, frames can be thought of as redundant sets
that generalize orthonormal bases. A frame { fi}m

i=1 for a finite d-dimensional space
can be used to represent any element f in the underlying space as

f =
m

∑
i=1

⟨ f , fi⟩gi =
m

∑
i=1

⟨ f ,gi⟩ fi.

The set {gi}m
i=1 is called a dual frame of { fi}m

i=1. If { fi}m
i=1 is an ETF, then it has

a dual that is also equiangular and tight. Roughly speaking, equiangular means that
the vectors are equally spaced, and being tight means that any given f can be rep-
resented in a form that is similar to an orthogonal expansion. One can say that for
ETFs, both the frame and its dual have a nice geometric structure. Unfortunately,
for many pairs (m,d), ETFs either do not exist or it is unknown whether or not they
exist [24]. Here we study equiangular frames that are not necessarily tight and in-
vestigate whether they can have an equiangular dual. If an equiangular dual cannot
be found, the desire is to be able to classify conditions under which an equiangu-
lar frame has a dual such that the number of distinct angles among the dual frame
vectors is small.

Some definitions and known results that will be used are collected next. We will
be concerned with d-dimensional Hilbert spaces of the form Fd , where F = R or
C. In Fd , a frame is the same as a spanning set. Given a set Φ = { f1, . . . , fm} in
Fd , let T be a matrix whose columns are the vectors f1, . . . , fm. T will be called the
synthesis operator of Φ . If Φ is a frame then the d × d matrix S = T T ∗ is called
the frame operator of Φ . The set Φ is said to be a tight frame if S is a constant
multiple of the identity. The set { f̃i = S−1 fi} is a dual frame for Φ , and is called the
canonical dual. The frame operator of the canonical dual is S−1. If for all 1 ≤ i ≤ m
there is a constant c such that ∥ fi∥ = c, then Φ is called an equal norm frame or a
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unit norm frame if c = 1. For basics on frame theory, the reader is referred to [4]. A
frame of m vectors in a d-dimensional space will be referred to as an (m,d) frame.
Unless otherwise stated, it will be assumed that m > d.

Definition 1 (Equiangular tight frame [24, 23])
An equiangular tight frame (ETF) is a set { fi}m

i=1 in Fd satisfying

(i) T T ∗ = m
d I, i.e., the set is a tight frame.

(ii) ∥ fi∥= 1, for i = 1, . . . ,m, i.e., the set is unit norm.

(iii) |⟨ fi, f j⟩|=
√

m−d
d(m−1) , 1 ≤ i ̸= j ≤ m.

The quantity
√

m−d
d(m−1) appearing in (iii) in Definition 1 will be referred to here as

the Welch bound . Relaxing the condition of being tight in Definition 1 gives an
equiangular frame as is defined next.

Definition 2 (Equiangular frame [28, 23])
An equiangular frame (EF) is a set { fi}m

i=1 that spans Fd , and satisfies

(i) ∥ fi∥= c, for i = 1, . . . ,m, and some c > 0, i.e., the set is equal norm.
(ii) |⟨ fi, f j⟩|= α, 1 ≤ i ̸= j ≤ m.

Note that in Definition 2, α equals the Welch bound only when the set is also unit
norm and tight [23].

The matrix T ∗T is the Gram matrix G of the set Φ . The (i, j)th entry of G is the
inner product ⟨ f j, fi⟩. If Φ is an equiangular frame (EF) then for all i ̸= j

α := |⟨ fi, f j⟩|.

If m vectors in Fd form an EF, then its Gram matrix G can be written as

G = cI +αQ (3)

where Q is an m×m Hermitian matrix with zero diagonal and unimodular entries
elsewhere, called the signature matrix. For a real EF, the off-diagonal entries of Q
are ±1. By [λ ]n it will be meant that the eigenvalue λ has multiplicity n. The Gram
matrix of a frame of m vectors in Fd will have eigenvalues that can be written as

[0]m−d < λ1 ≤ ·· · ≤ λd ,

and this implies that the eigenvalues of Q are [17, 15]

[−c/α]m−d ,(λ1 − c)/α, . . . ,(λd − c)/α.

Due to (3), the study of EFs reduces to the study of properties of Gram matrices
or the corresponding signature matrices. Note that G and the corresponding frame
operator S have the same nonzero eigenvalues. Thus the Gram matrix G of a tight
frame has only one distinct nonzero eigenvalue.

Lemma 1 A signature matrix Q always has at least one negative eigenvalue.
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Proof This follows from the fact that the trace of Q is zero, and the sum of the
eigenvalues of a matrix is equal to the trace. �

Definition 3 ([31])
Two signature matrices Q1 and Q2, are equivalent if there exists a signed permu-

tation matrix P such that Q2 = PQ1PT. Two signature matrices Q1 and Q2 are called
cospectral if they have the same set of eigenvalues.

Equivalent matrices are cospectral but starting from m = 8 there exist examples of
cospectral matrices of size m×m that are not equivalent [31].

For a given set { fi}m
i=1 in Fd , the angle set is defined to be the set{∣∣∣∣〈 fi

∥ fi∥
,

f j

∥ f j∥

〉∣∣∣∣ ,1 ≤ i ̸= j ≤ m
}
.

The number of distinct values in the angle set will be referred to as the number of
angles in the frame. For an equiangular frame, the angle set has only one distinct
value α, for some α ∈ R. Generalizing this gives the following.

Definition 4 (k-angle frame)
A frame { fi}m

i=1 for Fd is called a k-angle frame if the angle set has k distinct
values {α1, . . . ,αk}.

The focus here is mainly on real equiangular frames, i.e, we take F= R. Never-
theless, where possible, the results have been presented in the setting of Fd .

2 Construction and existence of equiangular frames

It is well known that there always exists a (d +1,d) ETF that can be obtained from
the vertices of a regular simplex [24]. Other constructions can be found in [17] for
(d +1,d) real ETFs, and, more recently, in [8] for both real and complex (d +1,d)
ETFs. However, as already mentioned in Section 1, an ETF does not exist for many
pairs (m,d), and one might wish to relax the conditions of an ETF and instead look
at equiangular frames that are not necessarily tight. By relaxing the requirement of
being tight, one can expect EFs to be more common than ETFs. For an arbitrary
size m, the existence of an EF is restricted by Gerzon’s bound, i.e., the maximum
number of equiangular lines is bounded above by d(d + 1)/2 in Rd , and d2 in Cd

[9].
As already discussed in Section 1, for any equiangular frame { fi}m

i=1 in Fd there
is a corresponding signature matrix. See (3) and the discussion that follows. Con-
versely, for a given signature matrix, an EF can be constructed as discussed below.
For convenience, we consider EFs that are unit norm. The method can be adapted to
the construction of EFs with any given norm.
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Construction of unit norm equiangular frames from signature matrices.

To construct an EF of size m, start with an m×m signature matrix Q. By Lemma 1,
Q has at least one negative eigenvalue. Let the minimum eigenvalue of Q be −µ,
µ > 0. Then

G = I +
1
µ

Q

is the Gram matrix of a unit norm EF of m vectors in Rd where m−d is the multi-
plicity of −µ . Due to (1), we have

1
µ

≥

√
m−d

d(m−1)

with equality attained if and only if the frame is also tight. From G, the actual frame
vectors can be constructed via a diagonalization of G. Since G is Hermitian, it can
be diagonalized by means of a unitary matrix. This means that there exists an m×m
unitary matrix V and a diagonal matrix D = diag(0, . . . ,0,λ1, . . . ,λd), such that

G =V DV ∗.

Take the last d columns of V : {vm−d+1, . . . ,vm}, and consider the m× d matrix F
whose ith column is

√
λ ivm−d+i.

F =

 | | |√
λ 1vm−d+1

√
λ 2vm−d+2 · · ·

√
λ dvm

| | |

 . (4)

Then the rows of F are the frame vectors of a unit norm (m,d) EF whose synthesis
operator is F∗. This leads to the following.

Proposition 1 Given m,d ∈ N, with m > d > 1. An equiangular frame of m vectors
in Fd exists if and only if there is an m×m signature matrix Q whose minimum
eigenvalue −µ, µ > 0, has multiplicity m− d. Further, if the frame is unit norm
then the α in Definition 2 is α = 1

µ ≥
√

m−d
d(m−1) with equality holding if and only if

the frame is also tight.

For a given m, there can be M = 2m(m−1)/2 different real m×m signature matrices,
some of which might be equivalent. From these M signature matrices one can get
EFs of m unit vectors in Rd for 2 ≤ d ≤ m − 1, according to Proposition 1. As
already mentioned, in Rd , m ≤ d(d+1)

2 [9]. The possibilities for 3 ≤ m ≤ 7, found
using MATLAB, are shown in Table 1. Beyond m = 7, the total number of m×m
signature matrices becomes too large to store and process at once.

The method of construction discussed above can be used to construct EFs whose
frame operator is diagonal. This is shown below in Proposition 2. See also Exam-
ples 3.1 and 3.2. It is worthwhile to note that the result in Proposition 2 is not specific
to EFs.
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Table 1 Table showing number of m×m signature matrices resulting in equiangular frames in Rd .

m d Total no. of m×m No. of signature matrices
signature matrices giving an (m, d) real EF

3 2 8 4
4 3 64 56
5 3 1024 192
5 4 1024 816
6 3 32768 384
6 4 32768 480
6 5 32768 31872
7 5 2097152 106528
7 6 2097152 1990560

Proposition 2 Let G be an m×m Hermitian matrix of rank d. Then there exists a
frame of m vectors in Fd whose Gram matrix is G such that the frame operator is
diagonal.

Proof Following a diagonalization of G, one can use the exact same notation as
above, and (4), to get the frame operator to be

S = F∗F =


−

√
λ 1vm−d+1 −

−
√

λ 2vm−d+2 −
...

−
√

λ dvm −


 | | |√

λ 1vm−d+1
√

λ 2vm−d+2 · · ·
√

λ dvm
| | |

 .

Since V is a unitary matrix
⟨vi,v j⟩= δi j,

and this gives

S =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd


which is diagonal. �

Two frames Φ = { f j} j∈J and Ψ = {g j} j∈J are unitarily equivalent if there is a
unitary transformation U such that for all j ∈ J, g j =U f j [28].

Corollary 1 Let Φ = { fi}m
i=1 be a frame of Fd . Then there exists a frame Ψ =

{gi}m
i=1 of Fd such that the frame operator of Ψ is diagonal, and Φ is unitarily

equivalent to Ψ .

Proof Let G be the Gram matrix of Φ . By Proposition 2, one can construct a frame
Ψ = {gi}m

i=1 such that the Gram matrix of Ψ is G, and the frame operator of Ψ is
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diagonal. As shown in [27], two frames are unitarily equivalent if and only if their
Gram matrices are equal. Thus, Φ and Ψ are unitarily equivalent. �

3 Nontight equiangular frames and their duals

From the definition of a tight frame it is obvious that an ETF will have its canonical
dual to be both equiangular and tight. The canonical dual vectors are just scaled
versions of the frame vectors, and the angle set of the canonical dual will also have
only one distinct value. This means that both the frame and its canonical dual have
a nice structure. Phrased in terms of Definition 4, an ETF is an 1-angle frame such
that the canonical dual is also an 1-angle frame. However, it is well-known that
for many pairs (m,d), ETFs do not exist [24]. Here, in Section 3.2, we study some
properties of the canonical dual for a nontight equiangular frame. The angle set of
the canonical dual is investigated in Section 3.3.

We first give some examples of nontight equiangular frames and their canonical
duals.

3.1 Examples of nontight equiangular frames

For a given d, we first investigate the number of equiangular frames of size d + 1
that one can have in Rd aside from the (d+1,d) ETF that is already known to exist.
For a (d +1,d) ETF, by the Welch bound,

|⟨ fi, f j⟩|= 1/d, i ̸= j.

Thus for a (d +1,d) nontight EF, since the Welch bound is not attained,

|⟨ fi, f j⟩|> 1/d, i ̸= j.

Example 3.1 [(d +1,d) equiangular frames]

1. All (3,2) real unit norm equiangular frames are ETFs. This is determined from
the minimum eigenvalue of each of the 23 = 8 possible signature matrices of
size 3×3, by checking when the multiplicity of this eigenvalue is 3−2 = 1. In
each of the 4 feasible cases, see Table 1, the minimum eigenvalue equals −2.
The corresponding unit norm EF has common angle α = 1

2 , which matches with
the Welch bound. Thus each EF is an ETF.

2. For d ≥ 3, there can be (d + 1,d) nontight equiangular frames. Take d = 3.
There are 64 possible real signature matrices Q of size 4 × 4. Out of these,
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56 give equiangular frames in R3. The resulting unit norm equiangular frames
have the common angle α to be either α = 1

3 or α = 1√
5
. These values come

from the minimum eigenvalue of the corresponding Q. The value α = 1
3 is the

corresponding Welch bound, and corresponds to a (4,3) ETF. The value α = 1√
5

comes from a (4,3) nontight EF. One signature matrix Q giving rise to such a
frame, and the corresponding Gram matrix G are

Q =


0 1 −1 −1
1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 , G =


1 1√

5
− 1√

5
− 1√

5
1√
5

1 − 1√
5
− 1√

5
− 1√

5
− 1√

5
1 − 1√

5
− 1√

5
− 1√

5
− 1√

5
1

 .

As shown in Section 2, a diagonalization of G will yield a frame corresponding
to this G coming from the rows of the matrix F. In this case, the rounded values
of F are 

0.5257 0 0.8506
−0.5257 0 0.8506

0 −0.8506 −0.5257
0 0.8506 −0.5257

 .

Here F∗ is the synthesis operator. The rounded values of the frame operator
S = F∗F are 0.5528 0 0

0 1.4472 0
0 0 2


which confirms that the frame is not tight. Note that the frame operator is diag-
onal, see Proposition 2. The canonical dual comes from the columns of S−1F∗

which is the synthesis operator of the canonical dual. The rounded values of
S−1F∗ are 0.9510 −0.9510 0 0

0 0 −0.5878 0.5878
0.4253 0.4253 −0.2629 −0.2629

 .

The matrix [⟨ f̃i
∥ f̃i∥

,
f̃ j

∥ f̃ j∥
⟩] is


1 − 2

3 − 1
6 − 1

6
− 2

3 1 − 1
6 − 1

6
− 1

6 − 1
6 1 − 2

3
− 1

6 − 1
6 − 2

3 1

 .

By inspection, the angle set of the canonical dual is { 1
6 ,

2
3}, and so the canonical

dual of this frame has 2 angles.
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Table 2 Table showing number of (d + 1)× (d + 1) signature matrices resulting in equiangular
frames in Rd .

d No. of (d +1)× (d +1) signature No. of different possibilities
matrices giving an EF in Rd of the common angle α

2 4 1
3 56 2
4 816 5
5 31872 11
6 1990560 40

For 2 ≤ d ≤ 6, Table 2 gives the number of feasible signature matrices of size (d +
1)× (d + 1) that can result in equiangular frames in Rd . The table also gives how
many different values of the common angle α are possible for each d. One of these
values will correspond to the Welch bound of the corresponding (d + 1,d) ETF.
Others will correspond to the common angles of nontight equiangular frames of
d +1 vectors in Rd .

Example 3.2 [(n,d) equiangular frames and their duals; n > d +1]

There does not exist a (5,3) real ETF [23]. The Welch bound for m = 5 and d = 3
is 1√

6
which cannot be attained by any set of 5 vectors in R3. However, there exists

a (5,3) real EF with signature matrix

Q =


0 −1 1 1 −1
−1 0 −1 1 1
1 −1 0 −1 1
1 1 −1 0 −1
−1 1 1 −1 0

 .

The eigenvalues of Q are −
√

5, −
√

5, 0,
√

5,
√

5. The Gram matrix is

G = I +
1√
5

Q =


1 − 1√

5
1√
5

1√
5

− 1√
5

− 1√
5

1 − 1√
5

1√
5

1√
5

1√
5

− 1√
5

1 − 1√
5

1√
5

1√
5

1√
5

− 1√
5

1 − 1√
5

− 1√
5

1√
5

1√
5

− 1√
5

1

 .

G has eigenvalues {0,0,1,2,2}. Thus G has two distinct nonzero eigenvalues, and
the corresponding frame is nontight. For this (5,3) equiangular frame, the absolute
value of the inner product between any two distinct vectors is 1√

5
as can be seen

from G, and this minimizes the maximum cross correlation among all 5 vectors in
R3 [25, 23]. To get the frame vectors of a (5,3) equiangular frame, consider the
SVD of G:
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G = PDP′

where

D =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,

and the rounded values of P are
0.1995 −0.6002 0.4472 −0.3820 −0.5041
−0.5091 −0.3752 0.4472 0.0127 0.6323
−0.5142 0.3683 0.4472 0.3614 −0.5190
0.1913 0.6028 0.4472 −0.5974 0.2075
0.6324 0.0043 0.4472 0.6053 0.1833

 .

Following Section 2, the frame vectors of a frame corresponding to the above G are
the rows of the matrix F whose rounded values are

0.4472 −0.5402 −0.7129
0.4472 0.0180 0.8942
0.4472 0.5111 −0.7340
0.4472 −0.8449 0.2935
0.4472 0.8560 0.2592

 .

It can be checked that the frame operator is

S = F∗F =

1 0 0
0 2 0
0 0 2


and that FF∗ = G. Note that the frame operator is diagonal, see Proposition 2. The
inverse of the frame operator is

S−1 =

1 0 0
0 1/2 0
0 0 1/2

 .

The canonical dual can be obtained from the columns of S−1F∗ whose rounded
values are  0.4472 0.4472 0.4472 0.4472 0.4472

−0.2701 0.0092 0.2555 −0.4225 0.4280
−0.3564 0.4471 −0.3670 0.1467 0.1296

 .

Upon calculating the Gram matrix of the canonical dual it can be seen that the
canonical dual of this frame has two angles [28].
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3.2 Frame properties of the canonical dual of equiangular frames

In what follows (see Corollary 2), we give a necessary and sufficient condition when
the canonical dual of certain equiangular frames will also be equiangular.

Proposition 3 [7]
Given {αi}m

i=1 ⊂ F, the following are equivalent:

(a)There exist dual frames { fi}m
i=1 and {gi}m

i=1 for Fd such that αi = ⟨ fi,gi⟩ for all
1 ≤ i ≤ m;

(b) d = ∑m
i=1 αi.

Theorem 1 [6]Let { fi}m
i=1 be an equal norm frame in Fd . Let { f̃i}m

i=1 denote the
canonical dual of { fi}m

i=1. Then { fi}m
i=1 is a tight frame if and only if ∥ fi∥∥ f̃i∥= d

m
for i = 1, . . . ,m.

Proof Suppose that { fi}m
i=1 is a tight frame in Fd with frame bound A. Note that

f̃i =
1
A fi for i = 1, . . . ,m. Since { fi}m

i=1 is equal norm, Proposition 3 implies that for
i = 1, . . . ,m,

d =
m

∑
j=1

⟨ f j, f̃ j⟩=
m
A
∥ fi∥2.

Thus we have

∥ fi∥=
√

Ad
m

, ∥ f̃i∥=
√

d
Am

.

This implies that ∥ fi∥∥ f̃i∥= d
m for i = 1, . . . ,m.

Conversely, suppose that ∥ fi∥∥ f̃i∥ = d
m for i = 1, . . . ,m. Using Proposition 3

again, we have

d =
m

∑
i=1

⟨ fi, f̃i⟩ ≤
m

∑
i=1

∣∣⟨ fi, f̃i⟩
∣∣≤ m

∑
i=1

∥ fi∥∥ f̃i∥= d.

This implies that |⟨ fi, f̃i⟩| = ∥ fi∥∥ f̃i∥ for i = 1, . . . ,m. Then for i = 1, . . . ,m, there
exists a constant λi such that f̃i = λi fi. Since { fi}m

i=1 is equal norm, and ∥ fi∥∥ f̃i∥=
d
m for i = 1, . . . ,m, |λi| is a constant for i = 1, . . . ,m. Note that

0 ≤
m

∑
j=1

|⟨ fi, f̃ j⟩|2 = ⟨ fi, f̃i⟩= λ i∥ fi∥2

for i = 1, . . . ,m. Then λi is a positive constant for i = 1, . . . ,m. This implies that
{ fi}m

i=1 is a tight frame. �

Corollary 2 Let { fi}m
i=1 be an equiangular frame in Fd . Then the canonical dual

{ f̃i}m
i=1 is equiangular with ∥ fi∥∥ f̃i∥= d

m for i = 1, . . . ,m if and only if { fi}m
i=1 is a

tight frame.
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Remark 1 Even if the canonical dual is not equiangular, due to Proposition 2, one
can construct EFs such that the frame operator of the canonical dual is diagonal.

As mentioned in Section 1, equivalent signature matrices are cospectral. Thus it is
obvious from (3), and the discussion that follows, that equivalent signature matrices
give rise to EFs having the same common angle α, where − 1

α is the minimum
eigenvalue of the equivalent signature matrices. Coming to canonical duals of EFs,
it is shown below in Proposition 4 that the canonical duals of certain equiangular
frames corresponding to equivalent signature matrices have the same angle set. The
following lemma is needed.

Lemma 2 Let Q1 and Q2 be two m×m equivalent signature matrices. There exist
equiangular frames { fi}m

i=1 and {ψi}m
i=1 corresponding to Q1 and Q2, respectively,

such that their respective frame operators S f and Sψ are the same.

Proof Obtain equiangular frames { fi}m
i=1 and {ψi}m

i=1 corresponding to Q1 and Q2,
respectively, by following the construction of Section 2. By Proposition 2, these
frames will have diagonal frame operators S f and Sψ , respectively. Since Q1 and Q2
are cospectral, the corresponding Gram matrices have the same eigenvalues. Recall
that frame operators have the same nonzero eigenvalues as the corresponding Gram
matrices, and so S f and Sψ are the same. �
Let T and F be the synthesis operators of two frames. These frames are said to have
equivalent Gram matrices if there exist a unitary matrix U and a signed (when F
= R) or phased (when F = C) permutation matrix P such that F = UT P. Note that
frames with equivalent Gram matrices have the same angle set.

Proposition 4 Let Q1 and Q2 be two m × m equivalent signature matrices. Let
{ fi}m

i=1 and {ψi}m
i=1 denote equiangular frames corresponding to Q1 and Q2, re-

spectively, that also satisfy Proposition 2. If the canonical dual { f̃i}m
i=1 has angle

set equal to A = {α1, . . . ,αk}, then the canonical dual {ψ̃i}m
i=1 also has the same

angle set A. Moreover, if { f̃i}m
i=1 is equal norm then {ψ̃i}m

i=1 is also equal norm.

Proof By the proof of Lemma 2, { fi}m
i=1 and {ψi}m

i=1 have the same frame operator
S. Let F and T denote the synthesis operators of { fi}m

i=1 and {ψi}m
i=1, respectively.

Since the frames have equivalent signature matrices Q1 and Q2, they have equiv-
alent Gram matrices, and there exists a unitary matrix U and a signed or phased
permutation matrix P such that F =UT P. Then

S = FF∗ = (UT P)(UT P)∗ = (UT P)P∗T ∗U∗ =UT T ∗U∗

= USU∗,

and thus S must commute with U . This further implies that Ũ := S−1US is unitary.
The synthesis operators of the canonical duals { f̃i}m

i=1 and {ψ̃i}m
i=1 are S−1F and

S−1T, respectively.

Ũ(S−1T )P = S−1US(S−1T )P = S−1UT P = S−1F.

Thus the canonical duals yield equivalent Gram matrices, and the result follows. �
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3.3 Angle sets of canonical duals of equiangular frames

In this section we investigate conditions under which an equiangular frame that is
not tight can have a dual that is a k-angle frame, where it is desired that k is a small
positive integer. Gram matrices of ETFs have one nonzero eigenvalue. This means
that signature matrices corresponding to ETFs have two distinct eigenvalues. Exam-
ples of such signature matrices are somewhat rare [24, 31], as are ETFs. It is known
that various large sets of equiangular lines have corresponding signature matrices
with three distinct eigenvalues [13]. This has motivated extensive study of signature
matrices with exactly three eigenvalues in [13, 31]. The results in this section and
some other related results can be found in [5]. In Theorem 2 and Theorem 3 below,
we analyze signature matrices with three distinct eigenvalues and study the number
of possible angles in the canonical dual of any corresponding equiangular frame. It
is worth noting that a result similar to Theorem 2 using strongly regular graphs is
given in [28]. The following Lemma 3 will be used.

Lemma 3 If −λ1, λ2, λ3 are the three distinct eigenvalues of a signature matrix Q,
ordered such that −λ1 < λ2 < λ3, λ1 > 0, then

−λ1 ̸=
λ2 +λ3

2
.

Proof Since Q has zero trace, it must have at least one positive eigenvalue, so λ3 >

0. Now, if −λ1 =
λ2+λ3

2 , then λ2 +λ3 < 0; thus −λ1 < λ2 < λ2 +λ3 <
λ2+λ3

2 < 0,
which is a contradiction. �

The following lemma can be proved by a direct calculation of the characteristic
polynomial of Q.

Lemma 4 If Q is an m×m signature matrix whose off-diagonal entries are all 1 then
Q has two distinct eigenvalues: m− 1 with multiplicity 1, and −1 with multiplicity
m−1.

An eigenvector is said to be regular if its entries are ±1. In what follows, 1 denotes
the vector whose each entry is 1, and J is the matrix whose entries are all 1. The
(i, j)th entry of a matrix A will be denoted by A(i, j).

Theorem 2 Let Q be an m × m signature matrix with three distinct eigenvalues
−λ1,λ2,λ3, ordered such that −λ1 < λ2 < λ3, with λ1 > 0. Let Φ denote any cor-
responding equiangular frame of m vectors in Rd . Then the following hold.
(a) Suppose that λ2 or λ3 is a simple eigenvalue with a regular eigenvector, and the
multiplicity of −λ1 is r. If the sum of this simple eigenvalue and λ1 is not m, then
the canonical dual is an equal norm 2-angle nontight frame, and d = m− r.
(b) Suppose that the minimum eigenvalue −λ1 is simple with a regular eigenvec-
tor. Then the canonical dual is an equal norm 2-angle nontight frame. In this case,
d = m−1.
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Proof The Gram matrix of a tight frame can have only one nonzero eigenvalue.
Since Q has three distinct eigenvalues, G must have two distinct nonzero eigenvalues
and so Φ is a not a tight frame. Thus the dual is also not tight in both (a) and (b).

Let P1, P2, and P3 denote the orthogonal projections onto the eigenspaces of −λ1,
λ2, and λ3, respectively. By the Spectral Theorem Q =−λ1P1+λ2P2+λ3P3, where
P1 +P2 +P3 = I, and for i ̸= j, PiPj = 0. The Gram matrix of Φ is

G = I +
1
λ1

Q =
λ1 +λ2

λ1
P2 +

λ1 +λ3

λ1
P3. (5)

The Gram matrix of the canonical dual is the pseudo inverse of G [3], and given by

G† =
λ1

λ1 +λ2
P2 +

λ1

λ1 +λ3
P3. (6)

(a) Since the multiplicity of the minimum eigenvalue of Q is r = m− d, the value
of d is obvious. Without loss of generality assume that λ3 is simple with a regular
eigenvector v. Then P3 =

1
∥v∥2 vvT = 1

m vvT. Note that the diagonal entries of P3 are all

equal to 1
m . This implies, from (5), that P2 also has constant diagonal. Therefore, in

(6), G† must have constant diagonal too, implying that the canonical dual is equal
norm.

Equating the off-diagonal entries of G in (5) gives

± 1
λ1

=
λ1 +λ2

λ1
P2(i, j)+

λ1 +λ3

λ1
P3(i, j),

or,

P2(i, j) = [±1− (λ1 +λ3)P3(i, j)]
1

λ1 +λ2
. (7)

Using (6), (7), and the fact that the off-diagonal entries of P3 are ± 1
m

G†(i, j) =± λ1

(λ1 +λ2)2 +

(
± 1

m

)[
λ1

λ1 +λ3
− λ1(λ1 +λ3)

(λ1 +λ2)2

]
, i ̸= j. (8)

From (8), the absolute values of the off-diagonal entries of G† can take only two
values, and this can be justified as follows. The expression inside the bracket in the
second term on the right side of (8) cannot be zero due to Lemma 3. Since Q has
three distinct eigenvalues, Q cannot have all its off-diagonal entries equal to 1 or all
equal to −1 due to Lemma 4. Thus the off-diagonal entries of G take both values
± 1

λ1
. If P3 and G have the exact same or the exact opposite sign distribution in

their off-diagonal entries, then, from (7) and the given assumption, the off-diagonal
entries of P2 will equal ±c for some constant c and have the same sign distribution
as that of P3 or G. In that case, P2P3 ̸= 0, which contradicts the Spectral Theorem.
Thus P3 and G cannot have the exact same or the exact opposite sign distribution.
All this suggests that the absolute values of the off-diagonal entries of G† take only
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two values, and the canonical dual is a 2-angle frame.
(b) Suppose that −λ1 is a simple eigenvalue. Since the multiplicity of the minimum
eigenvalue is 1, the frame is in Rm−1.

If 1 is an eigenvector for −λ1 then Q =−λ1
J
m +λ2P2 +λ3P3. Using the fact that

J
m +P2 +P3 = I in (5) gives

G =
λ1 +λ2

λ1
I − λ1 +λ2

λ1

J
m
+

λ3 −λ2

λ1
P3.

The Gram matrix of the dual then becomes

G† =
λ1

λ1 +λ2
P2 +

λ1

λ1 +λ3
P3 =

λ1

λ1 +λ2
(I − J

m
)+λ1(

1
λ1 +λ3

− 1
λ1 +λ2

)P3.

Equating the diagonal and off-diagonal entries of G and G†, one can conclude that
in this case the dual is 2-angle and equal norm.

Next suppose that −λ1 is a simple eigenvalue with a regular eigenvector v that is
not 1. This time

G =
λ1 +λ2

λ1
I − λ1 +λ2

λ1
P1 +

λ3 −λ2

λ1
P3. (9)

and

G† =
λ1

λ1 +λ2
I − λ1

λ1 +λ2
P1 +

λ1(λ2 −λ3)

(λ1 +λ3)(λ1 +λ2)
P3. (10)

Note that P1 =
1
m vvT with diagonal entries all equal to 1

m . Thus, in (9), the matrices G,
I, and P1 all have constant diagonal. This implies that P3 also has constant diagonal.
Using this in (10) shows that G† also has constant diagonal, i.e., the canonical dual
frame is equal norm.

Solving for P3 in (9), and using the fact that the off-diagonal entries of P1 are
± 1

m , gives

P3(i, j) =
1

λ3 −λ2

[
±1± λ1 +λ2

m

]
, for i ̸= j. (11)

Substituting (11) in (10), gives for i ̸= j

G†(i, j) =∓ 1
m

λ1
2λ1 +λ2 +λ3

(λ1 +λ2)(λ1 +λ3)
∓ λ1

(λ1 +λ2)(λ1 +λ3)
. (12)

Due to Lemma 3, the first term on the right of (12) cannot be zero. Thus

G†(i, j) =∓ 1
m

C2 ∓C3,

where C2 and C3 are nonzero constants. This implies that the canonical dual is a
2-angle frame. �
Suppose that a signature matrix Q with three distinct eigenvalues has an irrational
eigenvalue λ +

√µ. Then the other two eigenvalues of Q are λ −√µ and some
k ∈ Z [13, 31]. The following result proved in [12] will be used.
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Lemma 5 (Corollary 5.6 [12] )
Let Q be an m×m signature matrix with three distinct eigenvalues, at least one

of which is irrational. If m is odd then the eigenvalues of Q are

[−
√

m](m−1)/2, [0]1, [
√

m](m−1)/2.

Theorem 3 Let Q be an m×m signature matrix with three distinct eigenvalues, at
least one of which is irrational. Let Φ denote any corresponding equiangular frame
of m vectors in Rd .
(i) If m is odd, then the canonical dual is an equal norm frame with at most m− 1
angles, and d = m+1

2 .
(ii) Let Q have eigenvalues

[−k]m−2n, [a−
√

b]n, [a+
√

b]n

with minimum eigenvalue −k, k ∈Z+, a ∈Q, b ∈Q+, and m−2n > 1. Let the num-
ber of distinct moduli in the irrational part of the projection matrix of the eigenspace
of either a+

√
b or a−

√
b be p. Then the canonical dual has at most 2p angles,

and d = 2n.

Proof (i) Due to Lemma 5, the eigenvalues of Q in this case are

[−
√

m](m−1)/2, [0]1, [
√

m](m−1)/2.

Since the multiplicity of the minimum eigenvalue is m−1
2 , the value of d is given by

d = m− m−1
2

=
m+1

2
.

Denote the projection matrices of −
√

m and
√

m by P1 and P̂1, respectively. By the
Spectral Theorem, Q=−

√
mP1+

√
mP̂1. Note that due to properties of eigenvectors

corresponding to irrational eigenvalues, P1 and P̂1 are irrational conjugates of each
other, and can be written as P1 = Pa +Pb, P̂1 = Pa −Pb where the (i, j)th entries of
Pa and Pb are given by

Pa(i, j) = ai j ∈Q
Pb(i, j) = 0 or ±

√
bi j, bi j ∈Q, bi j not a perfect square.

It follows that Q = −2
√

mPb. The Gram matrix of Φ and the Gram matrix of the
canonical dual are given by

G = I +
1√
m

Q = I −P1 + P̂1 = I −2Pb, (13)

G† = I −P1 −
1
2

P̂1 = I − 3
2

Pa −
1
2

Pb, (14)



Equiangular frames and their duals 17

respectively. Using the relations P2
1 = P1, P2

1̂
= P̂1, P̂1P1 = 0, P1P̂1 = 0, one gets

Pa = 2P2
b and thus

G† = I −3P2
b − 1

2
Pb. (15)

The off-diagonal entries of G are ± 1√
m , and its diagonal entries are all equal to 1.

Equating the (i, j)th entries of the matrices in (13) then gives

Pb(i, j) =

{
0 if i = j

± 1
2
√

m if i ̸= j.

Let β := 1
2
√

m . The diagonal entries of P2
b are then all equal to (m−1)β 2. Since the

diagonal entries of Pb are all equal to zero, this means from (15) that G† has constant
diagonal, and that the canonical dual is equal norm.
The absolute values of the off-diagonal entries of P2

b can take at most m−1
2 distinct

values given by
{(m−2)β 2,(m−4)β 2, . . . ,β 2}.

This combined with the fact that I − 1
2 Pb can take the values 1± β

2 means that the
absolute values of the off diagonal entries of G† can take at most m− 1 distinct
values.

(ii) Now the multiplicity of the minimum eigenvalue is m−2n, and so d equals
2n. Let P2 and P̂2 denote the projection matrices of a+

√
b and a−

√
b, respectively.

As in part(i), these can be written as P2 = Pa +Pb, P̂2 = Pa −Pb, Let P1 denote the
projection matrix of −k. Since m−2n > 1, 1 is not a basis for the eigenspace of −k.
Thus P1 ̸= 1

m J, and the number of angles in the canonical dual cannot be determined
by Theorem 2. By the Spectral Theorem

Q =−kP1 +(a+
√

b)(Pa +Pb)+(a−
√

b)(Pa −Pb).

Using P1 +P2 + P̂2 = I gives

G = I +
1
k

Q =
2
k

(
(k+a)Pa +

√
bPb

)
.

The Gram matrix of the canonical dual is the pseudo inverse

G† =
2k

(k+a)2 −b

[
kG
2

−2
√

bPb

]
.

The result then follows from the fact that since Φ is equiangular, the off-diagonal
entries of G are either 1

k or − 1
k . �

Then existence of signature matrices satisfying the conditions of Theorem 2 and
Theorem 3 has been discussed in [12] and [31].
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Due to the algebraic properties of signature matrices [31], one cannot expect to
generalize the above results to any arbitrary number of distinct eigenvalues of Q. In
the context of regular graphs, signature matrices with four eigenvalues are discussed
in [32], and for this case, Theorem 3 can be extended as follows.

Theorem 4 Let Q be an m×m signature matrix with four distinct eigenvalues

[a−
√

b]n, [a+
√

b]n, [−k1]
m−2n−1, [k2]

1

with minimum eigenvalue −k1, where k1, k2 ∈ Z+, a ∈ Q, b ∈ Q+. Suppose that 1
is an eigenvector of Q corresponding to k2. Let the number of distinct moduli in the
purely irrational part of the projection matrix of the eigenspace of either a+

√
b or

a−
√

b be p. If Φ is any equiangular frame corresponding to Q then the canonical
dual is a frame in R2n+1 having at most 2p angles.

Proof The projection matrix of the eigenspace of k2 is J
m . The spectral decomposi-

tion of Q is

Q =−k1P1 + k2
J
m
+(a+

√
b)P2 +(a−

√
b)P̂2.

The proof then follows in an identical manner as Theorem 3 by noting that the off-
diagonal entries of J are all one. �
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2016.

5. O. Christensen, S. Datta, and R. Y. Kim. Equiangular frames and generalizations of the Welch
bound to dual pairs of frames. Linear and Multilinear Algebra, 2019.

6. O. Christensen, S. Datta, and R. Y. Kim. Duals and approximate duals of equiangular frames.
In preparation.

7. O. Christensen, A. Powell, and X. C. Xiao, A note on finite dual frame pairs. Proc. Amer.
Math. Soc. 140 (2012), no. 11, 3921–3930.

8. S. Datta and J. Oldroyd. Construction of k-angle tight frames. Numerical Functional Analysis
and Optimization, 37(8):975 – 989, 2016.



Equiangular frames and their duals 19

9. P. Delsarte, J. M. Goethals, and J. J. Seidel. Bounds for systems of lines and Jacobi polyno-
mials. Philips Res. Repts., 30(3):91–105, 1975. Issue in honour of C.J. Bouwkamp.

10. R. J. Duffin and A. C. Schaeffer A class of nonharmonic Fourier series. Transactions of the
American Mathematical Society, 72(2), 341 – 366, 1952.

11. M. Fickus, D. Mixon, and J. Tremain. Steiner equiangular tight frames. Linear Algebra Appl.,
436(5):1014–1027, March 2012.

12. G. Greaves. Equiangular lines systems and switching classes containing regular graphs. Linear
Algebra Appl. 536:31-51, 2018.

13. G. Greaves and J. H. Koolen and A. Munemasa and F. Szöllősi. Equiangular lines in Euclidean
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25. L. F. Tóth. Distribution of points in the elliptic plane. Acta Mathematica Academiae Scien-
tiarum Hungarica, 16:437 – 440, 1965.

26. J. A. Tropp. Complex equiangular tight frames. In Proc. SPIE Wavelets XI, pages 590412.01–
11, 2005.

27. R. Vale and S. Waldron. Tight frames and their symmetries. Constructive Approximation,
21(1):83 – 112, 2004.

28. S. Waldron. On the construction of equiangular frames from graphs. Linear Algebra Appl.,
431(11):2228–2242, 2009.

29. L. R. Welch. Lower bounds on the maximum cross correlation of signals. IEEE Transactions
on Information Theory, 20(3):397–399, May 1974.

30. P. Xia, S. Zhou, and G. B. Giannakis. Achieving the Welch bound with difference sets. IEEE
Transactions on Information Theory, 51(5):1900 – 1907, May.
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