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1. Introduction

1.1. Background and motivation

Given a set of M unit vectors {fi}Mi=1 in CN , Welch [23] gave a family of lower
bounds on the maximal cross correlation among the vectors. Given an integer
K ≥ 1, Welch showed that

max
i 6=j
|〈fi, fj〉|2K ≥

1

M − 1

[
M(

N+K−1
K

) − 1

]
. (1)

In fact, these bounds were obtained as a consequence of the following inequality:

M∑
i=1

M∑
j=1

|〈fi, fj〉|2K ≥
M2(

N+K−1
K

) . (2)

These bounds have become a standard tool in waveform design for both communi-
cations and radar. Motivated by applications in communications (e.g., CDMA),
several authors have studied conditions under which the Welch bounds in (1)
and (2) are attained. Sets satisfying the lower bounds for K = 1 also arise in
other application contexts as in quantum information processing and coding the-
ory [12, 14, 16–18].
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The original derivation of the bounds as done by Welch was analytical. Nonethe-
less, these bounds have a geometric character. The geometric perspective has been
used in [7, 20, 22], and the characterization of sets of vectors satisfying the lower
bounds has been done in terms of frames. It seems natural to extend the geometric
study of this family of bounds to the maximal cross correlation among subspaces
of a given Hilbert space. Another possible generalization is to consider vectors {fi}
indexed by a continuous set, or random vectors drawn from some probability dis-
tribution. In the latter case, the expectation of the cross correlation can be derived
and the deviation of the cross correlation from the expectation can be studied.
These extensions of the original Welch bounds in (1) and (2) are discussed in this
work. The main objective here is to put on common ground lower bounds on the
maximal cross correlation among vectors indexed by a discrete or continuous set,
subspaces, and random vectors in a (discrete) set with the underlying space being
some finite dimensional Hilbert space. The author has recently become aware of
work on p-fusion frames [1] where such lower bounds also arise. Even though the
fusion frame potential is used here to derive the required lower bounds, p-fusion
frames are not studied in this work.

1.2. Notation and preliminaries

Let H be a Hilbert space and let X = {fk}k∈K be a collection of vectors in H. Then
X is said to be a frame for H if there exist constants A and B, 0 < A ≤ B < ∞,
such that for any h ∈ H,

A‖h‖2 ≤
∑
k∈K
|〈h, fk〉|2 ≤ B‖h‖2. (3)

The constants A and B are called the frame bounds. If A = B, the frame is said to
be tight. Tight frames for which A = B = 1 are called Parseval frames.

The map F : H → `2(K) given by F (h) = {〈h, fk〉}k∈K is called the analysis
operator. The synthesis operator is the adjoint map F ∗ : `2(K)→ H, given by

F ∗({ak}) =
∑
k∈K

akfk.

The frame operator S : H → H is given by S = F ∗F. This means that for all
h ∈ H,

Sh =
∑
k∈K
〈h, fk〉fk. (4)

Every h has an expansion formula in terms of the frame vectors given by

h =
∑
k∈K
〈h, S−1fk〉fk =

∑
k∈K
〈h, fk〉S−1fk.

Here {S−1fk}k∈K is also a frame and is called the dual frame. Due to (4), one can
write the frame condition (3) as

A〈h, h〉 ≤ 〈Sh, h〉 ≤ B〈h, h〉. (5)
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For a tight frame, the frame operator is just a constant multiple of the identity,
i.e., S = AI, where I is the identity map. For the general theory on frames one
can refer to [5], [8].

The above concepts on frames can be generalized in several ways. If the family
{ft}t∈K is indexed by a continuum rather than a discrete set then what results is
called a generalized frame [13] or continuous frame [5]. Let (K,B, µ) be a measure
space that plays the role of the index set. Let f : K → H be a µ-measureable
function where t ∈ K is mapped to ft in H. The set {ft}t∈K is a generalized frame
for H if there exist constants A and B, 0 < A ≤ B <∞, such that for all h ∈ H,

A‖h‖2 ≤
∫
K
|〈h, ft〉|2 dµ(t) ≤ B‖h‖2. (6)

Let Πv : H → H be the orthogonal projection onto the one dimensional subspace
spanned by v ∈ H, i.e., Πv(h) = 〈h, v〉v. The frame operator of {ft}t∈K is then

Sµ(h) =

∫
K

Πft(h) dµ(t).

The summands in (4) are all rank one projections. Therefore, another way to
generalize the concept of a frame is to consider sums of projections whose ranks
are greater than or equal to one. Let {Wk}k∈K be a sequence of subspaces in H
and Pk be the orthogonal projection of H onto Wk. Then〈∑

k∈K
Pkh, h

〉
=
∑
k∈K
‖Pkh‖2, ∀h ∈ H.

Considering
∑

k∈K Pkh, instead of Sh in (5), a fusion frame can be defined as
follows [4]. A family of closed subspaces {Wk}k∈K is called a fusion frame for H,
with respect to weights {wk}k∈K, wk > 0, if there exist constants 0 < A ≤ B <∞
such that for all h ∈ H,

A‖h‖2 ≤
∑
k∈K

w2
k‖Pkh‖2 ≤ B‖h‖2. (7)

A combination of generalized frames and fusion frames leads naturally to the def-
inition of a generalized fusion frame [15]. Let (K,B, µ) be a measure space. Let
w : K → R+ and f : K → P(H), where P(H) is the space of orthogonal projections
on H. Let wt and ft be the images of t under the functions w and f, respectively.
The collection {wt, ft}t∈K is a generalized fusion frame if there exist constants
0 < A ≤ B <∞ such that for all h ∈ H,

A‖h‖2 ≤
〈∫
K
w2
t ft(h)dµ(t), h

〉
≤ B‖h‖2.

A great overview of generalizations of frames can be found in [15].
The frame potential [2] of a set {fi}Mi=1 of vectors is defined to be the sum

M∑
i,j=1

|〈fi, fj〉|2.
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It can be shown [2] that the minimizers of the frame potential are tight frames,
meaning that unit-normed tight frames attain the lower bound in (2) when K = 1.
Note that the frame potential of {fi}Mi=1 is the trace of the square of the frame
operator S. Considering

∑
k∈K Pk instead of the frame operator S, the fusion frame

potential of {Wk}k∈K is defined as [3]

FFP({Wk}k∈K) := tr

(∑
k∈K

Pk

)2

=
∑
i∈K

∑
j∈K

tr(PiPj). (8)

The K-fold tensor product V ⊗K of an N -dimensional vector space V is a vector
space spanned by elements of the form v1⊗· · ·⊗vK where each vi ∈ V [9, 19]. The

vector v1⊗· · ·⊗vK is called a tensor and has NK coordinates (v
(`1)
1 , v

(`2)
2 , . . . , v

(`K)
K ),

where `i = 1, 2, . . . , N, i = 1, 2, . . . ,K, and v
(`)
i denotes the `th coordinate of

the vector vi. A choice of basis {e1, . . . , eN} for V gives rise to a basis for V ⊗K

consisting of the NK product elements ei1...iK ≡ ei1⊗· · ·⊗eiK , 1 ≤ i1, . . . , iK ≤ N .
In particular, V ⊗K has dimension NK .

The space of symmetric K-tensors associated with V , denoted SymK(V ), is the
subspace of V ⊗K spanned by those tensors which remain fixed under permutation.
Specifically, denote by SK the symmetric group on K symbols and define an action
of SK on V ⊗K by

Aσ(v1 ⊗ · · · ⊗ vK) = vσ−1(1) ⊗ · · · ⊗ vσ−1(K).

Then SymK(V ) consists of all elements of V ⊗K such that Aσ(v1 ⊗ · · · ⊗ vK) =
v1 ⊗ · · · ⊗ vK for all σ ∈ SK (see Chapter 10 of [19]). If V has dimension n then

dim SymK(V ) =

(
n+ k − 1

k

)
.

SymK(V ) has a natural inner product with the property〈
v⊗K , w⊗K

〉
SymK(V )

= 〈v, w〉KV . (9)

1.3. Outline

In Section 2, a lower bound on the cross correlation of subspaces of a given Hilbert
space is obtained by using the inner product of orthogonal projections onto the
subspaces. In Section 2.1 an alternate way of calculating such lower bounds is
discussed by using the principal angles between subspaces. Conditions under which
the lower bounds will be attained are discussed in Section 2.2. Welch bounds for
generalized fusion frames and random frames are discussed in sections 3 and 4,
respectively.

2. Welch bounds for subspaces

Let W1 and W2 be two subspaces of an N -dimensional Hilbert space H. Let P1 and
P2 be the orthogonal projections onto W1 and W2, respectively. Define the inner
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product

〈P1, P2〉 := tr(P ∗1P2) = tr(P1P2).

This inner product of P1 and P2 can be used as a measure of the cross correlation
between the corresponding subspaces W1 and W2. In the following, a finite number
of M subspaces {W`}M`=1 of the Hilbert space H is considered. The orthogonal
projection of H onto Wj is denoted by Pj . Let dim(Wj) = Lj . Then dim(R(Pj)) =
dim(Wj) = Lj . If P is an orthogonal projection then tr(P ) = dim(R(P )). Thus
tr(Pj) = Lj . The fusion frame potential defined in (8) then becomes

FFP({W`}M`=1) =

M∑
i,j=1

tr (PiPj) =

M∑
i,j=1

〈Pi, Pj〉.

Proposition 2.1 [3] Let P` be the orthogonal projection of an N -dimensional
Hilbert space H onto a subspace W`, 1 ≤ ` ≤M. If L` is the trace of P`, then

FFP({W`}M`=1) =

M∑
i,j=1

〈Pi, Pj〉 ≥
1

N

(
M∑
`=1

L`

)2

.

Theorem 2.2 [First Welch bound for subspaces] Under the assumptions of Propo-
sition 2.1,

max
6̀=`′
〈P`, P`′〉 ≥

∑M
`=1 L`

M(M − 1)

[
1

N

M∑
`=1

L` − 1

]
.

Proof. Using Proposition 2.1 and the fact that the maximum of a set of numbers
is greater than or equal to the average, the following holds.

max
6̀=`′
〈P`, P`′〉 ≥

1

M(M − 1)

∑
6̀=`′
〈P`, P`′〉 =

1

M(M − 1)

∑
`6=`′

tr(P`′P`)

=
1

M(M − 1)

 M∑
`,`′=1

tr(P`′P`)−
M∑
`=1

tr(P 2
` )

 ≥ 1

M(M − 1)

 1

N

(
M∑
`=1

L`

)2

−
M∑
`=1

tr(P`)


=

1

M(M − 1)

 1

N

(
M∑
`=1

L`

)2

−
M∑
`=1

L`

 =

∑M
`=1 L`

M(M − 1)

[
1

N

M∑
`=1

L` − 1

]
.

Theorem 2.3 (Bounds for higher order fusion frame potential) Under the assump-

tions of Proposition 2.1, let P
(K)
` denote the orthogonal projection of SymK(H) onto

SymK(W`), for some integer K > 1. Then

FFP{SymK(W`)}M`=1 := tr

(
M∑
`=1

P
(K)
`

)2

≥

(∑M
`=1

(
L`+K−1

K

))2

(
N+K−1

K

) . (10)
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Proof. Under the assumptions, R(
∑M

`=1 P
(K)
` ) ⊆ SymK(H). It is known that

dim(SymK(H)) =
(
N+K−1

K

)
and therefore

dim

(
R

(
M∑
`=1

P
(K)
`

))
≤ dim

(
SymK(H)

)
=

(
N +K − 1

K

)
.

Let
∑M

`=1 P
(K)
` have D nonzero eigenvalues, λ1, λ2, . . . , λD. Then D ≤

(
N+K−1

K

)
.

The fusion frame potential of {SymK(W`)}M`=1 is

FFP{SymK(W`)}M`=1 := tr

(
M∑
`=1

P
(K)
`

)2

=
D∑
n=1

λ2
n ≥

(∑D
n=1 λn

)2

D
≥

(∑D
n=1 λn

)2

(
N+K−1

K

) .

Further,

D∑
n=1

λn = tr

(
M∑
`=1

P
(K)
`

)
=

M∑
`=1

tr
(
P

(K)
`

)
=

M∑
`=1

dim
(
R
(
P

(K)
`

))

=
M∑
`=1

dim
(
SymK(W`)

)
=

M∑
`=1

(
L` +K − 1

K

)

and therefore,

FFP{SymK(W`)}M`=1 ≥

(∑M
`=1

(
L`+K−1

K

))2

(
N+K−1

K

) .

Let {fi}M1

i=1 and {gi}M2

i=1 be frames for the subspaces W1 and W2, respectively.

The respective dual frames are written as {f̃i}M1

i=1 and {g̃i}M2

i=1. If P1 and P2 are
orthogonal projections of H onto W1 and W2, respectively, then for any f in H,

P1(f) =

M1∑
i=1

〈f, f̃i〉fi, P2(f) =

M2∑
i=1

〈f, g̃i〉gi.

Using the fact that 〈P1, P2〉 = tr(P ∗1P2) = tr(P1P2), the following lemma follows
by direct calculation.

Lemma 2.4 Let W1 and W2 be two subspaces of H. Let {fi}M1

i=1 and {gi}M2

i=1 be
frames for W1 and W2, respectively. If P1 and P2 are orthogonal projections of H
onto W1 and W2, respectively, then

tr(P1P2) =

M1∑
i=1

M2∑
j=1

〈gj , fi〉〈f̃i, g̃j〉. (11)

In analogy with the classical Welch bounds on maxi 6=j |〈fi, fj〉|2K for a set of
vectors {fi}, the lower bounds for max`6=`′〈P`, P`′〉K for some integer K > 1 is

6



August 26, 2015 Linear and Multilinear Algebra WelchGeneralizedFrames2015RevisionLMA

calculated next.

Theorem 2.5 (Higher order Welch bounds for subspaces) Let K > 1 be an
integer. Let H be an N -dimensional Hilbert space and {W`}M`=1 be M subspaces of
H. Assume that for each subspace W`, there exists a Parseval frame X` = {fi}
such that the set X

(K)
` = {f⊗Ki } is a tight frame for SymK(W`), and the product

of the frame bounds of any pair X
(K)
i and X

(K)
j is greater than or equal to 1.Then,

under the notation of Theorem 2.3,
(a)

M∑
`,`′=1

〈P`, P`′〉K ≥
M∑

`,`′=1

tr(P
(K)
` P

(K)
`′ ) ≥

(∑M
`=1

(
L`+K−1

K

))2

(
N+K−1

K

) ,

(b)

max
6̀=`′
〈P`, P`′〉K ≥

1

M(M − 1)


(∑M

`=1

(
L`+K−1

K

))2

(
N+K−1

K

) −
M∑
`=1

(L`)
K

 . (12)

Proof. Consider the case K = 2. By using (11), and the same notation as in Lemma
2.4,

〈P1, P2〉2 = (tr(P1P2))2 =

M1∑
i=1

M2∑
j=1

〈gj , fi〉〈f̃i, g̃j〉

2

=

M1∑
i=1

(
M2∑
`=1

〈g`, fi〉〈f̃i, g̃`〉

)2

+
∑
i 6=j

(
M2∑
`=1

〈g`, fi〉〈f̃i, g̃`〉

)(
M2∑
`=1

〈g`, fj〉〈f̃j , g̃`〉

)

=

M1∑
i=1

M2∑
`=1

〈g`, fi〉2〈f̃i, g̃`〉2 +
∑
r 6=s
〈gr, fi〉〈f̃i, g̃r〉〈gs, fi〉〈f̃i, g̃s〉

+

∑
i 6=j

(
M2∑
`=1

〈g`, fi〉〈f̃i, g̃`〉

)(
M2∑
`=1

〈g`, fj〉〈f̃j , g̃`〉

)

=

M1∑
i=1

M2∑
`=1

〈g⊗2
` , f⊗2

i 〉〈f̃i
⊗2
, g̃`
⊗2〉+ S1 + S2.

where S1 and S2 will be computed explicitly. Let {fi}M1

i=1 and {gi}M2

i=1 be Parseval

frames for W1 and W2, respectively, such that {f⊗2
i }

M1

i=1 and {g⊗2
i }

M2

i=1 are tight

frames with bounds A1 and A2, with A1A2 ≥ 1. Then, f̃i
⊗2

= f⊗2
i = A1f̃

⊗2
i

and g̃i
⊗2 = g⊗2

i = A2g̃
⊗2
i . If P

(2)
1 and P

(2)
2 denote the orthogonal projections onto

Sym2(W1) and Sym2(W2), respectively, then Lemma 2.4 can be used for Sym2(W1)

7
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and Sym2(W2) to obtain

〈P1, P2〉2 = A1A2

M1∑
i=1

M2∑
`=1

〈g⊗2
` , f⊗2

i 〉〈f̃
⊗2
i , g̃⊗2

` 〉+ S1 + S2

= A1A2tr(P
(2)
1 P

(2)
2 ) + S1 + S2

≥ tr(P
(2)
1 P

(2)
2 ) + S1 + S2 (13)

where

S1 =
∑
i

∑
r 6=s
〈gr, fi〉〈f̃i, g̃r〉〈gs, fi〉〈f̃i, g̃s〉 =

∑
i

∑
r 6=s
|〈gr, fi〉|2|〈gs, fi〉|2

and

S2 =
∑
i 6=j

(
M2∑
r=1

〈gr, fi〉〈f̃i, g̃r〉

)(
M2∑
s=1

〈gs, fj〉〈f̃j , g̃s〉

)
=
∑
i 6=j

M2∑
r=1

|〈fi, gr〉|2
M2∑
s=1

|〈fj , gs〉|2.

Note that S1 ≥ 0, S2 ≥ 0, and are equal to zero when W1 and W2 belong to the
orthogonal complement of each other. Thus

〈P1, P2〉2 ≥ tr(P
(2)
1 P

(2)
2 ).

In general, for K > 1, let P
(K)
1 and P

(K)
2 denote the orthogonal projections of

H onto SymK(W1) and SymK(W2), respectively. Starting with Parseval frames
{fi}M1

i=1 and {gi}M2

i=1 of W1 and W2, assume that {f⊗Ki }M1

i=1 and {g⊗Ki }M2

i=1 are tight
frames with frame bounds A1 and A2, respectively, satisfying A1A2 ≥ 1. Then

〈P1, P2〉K = [tr(P1P2)]K =

M1∑
i=1

M2∑
j=1

〈gj , fi〉〈f̃i, g̃j〉

K

=

M1∑
i=1

M2∑
j=1

〈gj , fi〉〈f̃i, g̃j〉

K

+ T1

=

M1∑
i=1

M2∑
j=1

〈gj , fi〉K〈f̃i, g̃j〉K + T2

+ T1

=

M1∑
i=1

M2∑
j=1

〈g⊗Kj , f⊗Ki 〉〈f̃i
⊗K

, g̃j
⊗K〉+ T3

≥ tr(P
(K)
1 P

(K)
2 ). (14)

The terms T1, T2, and T3 in the above consist of sums involving |〈gj , fi〉|2, 1 ≤ i ≤
M1, 1 ≤ j ≤M2, and are therefore bounded below by zero, the lower bound of zero
being attained by these sums when the subspaces W1 and W2 are in the orthogonal
complement of each other.

8
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From (14), the result in (a) follows due to Theorem 2.3 by noting that

tr
(∑M

`=1 P
(K)
`

)2
=
∑M

`,`′=1 tr(P
(K)
` P

(K)
`′ ).

(b) Once again, using the fact that the maximum of a set of numbers is greater
than or equal to the average, one gets

max
6̀=`′
〈P`, P`′〉K ≥

1

M(M − 1)

∑
`,`′

〈P`, P`′〉K =
1

M(M − 1)

∑
`,`′

[trP`′P`]
K

=
1

M(M − 1)

 M∑
`,`′=1

[tr(P`′P`)]
K −

M∑
`=1

[tr(P 2
` )]K


=

1

M(M − 1)

 M∑
`,`′=1

[tr(P`′P`)]
K −

M∑
`=1

[tr(P`)]
K


=

1

M(M − 1)

 M∑
`,`′=1

[tr(P`′P`)]
K −

M∑
`=1

LK`


≥ 1

M(M − 1)

 M∑
`,`′=1

tr(P
(K)
` P

(k)
`′ )−

M∑
`=1

LK`

 (due to 14).

Using either Theorem 2.3 or part (a),

max
6̀=`′
〈P`, P`′〉K ≥

1

M(M − 1)


(∑M

`=1

(
L`+K−1

K

))2

(
N+K−1

K

) −
M∑
`=1

LK`

 .

Remark 1 It is important to note that in general it is challenging to construct
a tight frame X = {f1, . . . , fm} for a space W such that the set of pure tensors
X(K) = {f⊗K1 , . . . , f⊗Km } is a tight frame for SymK(W ). However, for the case
K = 2, these are given by mutually unbiased bases [14].

2.1. Bounds on cross correlation using principal angles

In this section, an alternate notion is used to quantify the cross correlation between
subspaces. This is done by using the principal angles between subspaces and the
corresponding principal vectors. It is seen that in this case the results reduce to
the standard Welch bounds for vectors. Nonetheless, the idea is interesting enough
to be included here.

Let W1 and W2 be two subspaces of a Hilbert space H. Let the dimensions of W1

and W2 be p and q, respectively, where it can be assumed that p ≥ q. The principal
angles θ1, . . . , θq ∈ [0, π/2] between W1 and W2 can be defined recursively as follows
[11]. Let

cos(θ1) = max
u∈W1

max
v∈W2

〈 u
‖u‖

,
v

‖v‖
〉 =: 〈u1, v1〉. (15)

9



August 26, 2015 Linear and Multilinear Algebra WelchGeneralizedFrames2015RevisionLMA

For k > 1, let

cos(θk) = max
u∈W1

max
v∈W2

〈 u
‖u‖

,
v

‖v‖
〉 =: 〈uk, vk〉 (16)

subject to:

〈u, ui〉 = 0, and 〈v, vi〉 = 0, i = 1, . . . , k − 1

The vectors {ui}qi=1 and {vi}qi=1 are called the principal vectors. Note that the
principal angles satisfy 0 ≤ θ1 ≤ · · · ≤ θq ≤ π/2. The following may be used as a
measure of the cross correlation among subspaces.

CorrW1W2
:= cos(θq).

Let {W`}M`=1 be a sequence of M subspaces in an N -dimensional Hilbert space
H. Noting that the cross correlation between subspaces is studied here through
M principal vectors, one from each subspace, this unsurprisingly reduces to the
ordinary Welch bounds on inner product between vectors:

max
i 6=j

Corr2K
WiWj

≥ 1

M − 1

[
M(

N+K−1
K

) − 1

]
(17)

forK ≥ 1. If the dimension ofH is greater than or equal to the number of subspaces,
that is, N ≥M, then the bounds in (17) become trivial.

2.2. Equality in Welch bounds for subspaces

It seems natural to study conditions on subspaces that would result in attaining the
lower bounds. For a fixed integer K ≥ 1, equality is attained in (10) of Theorem 2.3

if and only if all the eigenvalues of
∑M

`=1 P
(K)
` are equal, i.e., when {SymK(W`)}M`=1

is a tight fusion frame for some subspace of SymK(H). Besides, in order to attain

the equality, it is also required that
⊕M

`=1 SymK(W`) = SymK(H). To consider
equality in (12), it is necessary for each subspace Wi to have a Parseval frame
X = {fn} such that the set X(K) = {f⊗Kn } is a tight frame for SymK(Wi) and it
has already been noted that such sets X are in general challenging to construct [14].

For equality in (12), it is then required that W
(K)
` and W

(K)
`′ are in the orthogonal

complement of each other, for ` 6= `′. In (17) of Section 2.1, since the notion of
cross correlation considered reduces to that of the usual Welch bounds on inner
product of vectors, equality is attained if and only if the principal vector from each
subspace, corresponding to the largest principal angle, forms an equiangular tight
frame [7].

3. Welch bounds for generalized fusion frames

With V an N -dimensional subspace of H, denote by SN−1 the set of unit vectors
in V . For each x ∈ SN−1, there is an associated projector Πx : V → span(x) (i.e.,
onto the one-dimensional subspace spanned by x) given by

Πx(v) = 〈x, v〉x.

10
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Since Πx = Πeiθx for any θ ∈ [0, 2π), the collection of projectors Πx is parameterized
by the complex projective space CPN−1. For K > 1, consider SymK(V ). In this
setting, the projector Πx⊗K maps SymK(V ) onto the one-dimensional subspace
spanned by the tensor power x⊗K with x ∈ SN−1. Direct calculation using (9)
yields

Πx⊗K = Π⊗Kx ,

and, for v ∈ V ,

Π⊗Kx v⊗K = 〈x, v〉K x⊗K

This collection of projectors is parameterized by CPN−1. Corresponding to each
x ∈ CPN−1, choosing a representative unit vector in V yields a collection of unit
vectors

X
(K)

CPN−1 = {u⊗Kx | ux ∈ V, x ∈ CPN−1}

Given a normalized measure µ on CPN−1, X
(K)

CPN−1 becomes a generalized frame for

SymK(V ) with frame operator S
(K)
µ : SymK(V )→ SymK(V ) by

S(K)
µ =

∫
CPN−1

Πx⊗Kdµ(x).

Theorem 3.1 [7] Let µ be a normalized measure on CPN−1 and let XCPN−1 be a
generalized frame for an N -dimensional subspace V of a Hilbert space H. Then for
all K ≥ 1, ∫∫

CPn−1

| 〈x, y〉 |2Kdµ(x)dµ(y) >
1(

N+K−1
K

) , (18)

with equality if and only if (X
(K)

CPN−1 , µ) is a generalized tight frame for SymK(V ).

In the spirit of the work presented here, one can try to look for similar bounds
for generalized fusion frames. Let (K,B, µ) be a measure space and {wt, ft}t∈K a
generalized fusion frame. Considering the weights wt to be all equal to one, the
generalized fusion frame potential of {ft}t∈K can be defined as

GFFP({ft}t∈K) := tr

(∫
K
fx dµ(x)

)2

. (19)

Then

GFFP({ft}t∈K) =

∫∫
K

tr (fxfy) dµ(x) dµ(y).

Theorem 3.2 Let V be an N dimensional subspace of H and let {ft}t∈K be a
generalized fusion frame for V with respect to a measure space (K,B, µ). Then

GFFP ({ft}t∈K) ≥
(∫
K tr (fx) dµ(x)

)2
N

.

11
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The proof of Theorem 3.2 is a direct consequence of the Cauchy Schwarz In-
equality and the properties of the trace function.

4. Welch bounds for random frames

Let {Yk`}k,`∈Z be a doubly indexed sequence of random variables that are indepen-
dent identically distributed (i. i. d.) according to the Gaussian or normal distribu-

tion with mean zero and variance σ2, written as Yk` ∼ N(0, σ2).1 Let Xk` = e
2πi

ε
Yk` ,

where ε is a fixed constant to be chosen.2 Define a vector fj ∈ Cn as 3

fj =
1√
n


Xj1

Xj2
...

Xjn

 .
Consider the set {f1, . . . , fM}. This is a set of random vectors in Cn. The analysis
operator of this set is a random matrix with independent entries. The singular
values of the analysis operator are the eigenvalues of the frame operator. By using
known results on the non-asymptotic distribution of singular values of random ma-
trices [21], the frame properties of such sets of random vectors can be studied [6].4

To estimate the expectation of the cross correlation among such random vectors
first note that |Xk`| = 1 for all k and `. Let φ denote the characteristic function of
a random variable. If Y ∼ N(0, σ2), then

φ(t) = e−
σ2

2
t2 . (20)

Therefore, for integers r 6= s and ` 6= `′,

E[Xr`Xs`′Xr`′ Xs`] =

[
φ

(
2π

ε

)]4

= e−2σ2(2π/ε)2 . (21)

Using (21),

E[|〈fr, fs〉|2] = E[〈fr, fs〉〈fr, fs〉]

=
1

n2
E

[
n∑
`=1

Xr`Xs`

n∑
`′=1

Xr`′Xs`′

]

=
1

n2
E

 n∑
`=1

|Xr`|2|Xs`|2 +
∑
`6=`′

Xr`Xr`′ Xs`Xs`′


=

1

n2
(n+ n(n− 1)e−2σ2(2π/ε)2) =

1

n
+
n− 1

n
e−2σ2(2π/ε)2 . (22)

1The results here are for the Gaussian random variable, but other random variables can be used.
2The specific construction given here comes from constructing random sequences with arbitrarily low
expected autocorrelation outside the origin [6].
3The dimension here is taken to be n instead of N to avoid confusion with the notation for a normal

random variable.
4Note that these random frames are different from the so called probabilistic frames in [10].

12
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To estimate the deviation of |〈fr, fs〉|2 from its expectation one can define a Doob
martingale and use Azuma’s Inequality as follows. Fix r, s, r 6= s. Let

α` := Xr`Xs`.

Let

Uj = E
[
|〈fr, fs〉|2| α1, . . . , αj

]
.

Under this definition,

U0 = E
[
|〈fr, fs〉|2

]
, and Un = |〈fr, fs〉|2.

Then {U0, . . . , Un} gives a Doob martingale. Further,

|Uj − Uj−1| ≤ 2
n− 1

n
e−2σ2( 2π

ε )
2

= C.

By Azuma’s Inequality,

P
[∣∣|〈fr, fs〉|2 − E [|〈fr, fs〉|2]∣∣ ≥ λ] = P [|Un − U0| ≥ λ] ≤ e−λ2/2

∑n
1 C

2

= e−λ
2/2nC2

.

For an integer k > 1, the expected value of |〈fr, fs〉|2k is calculated next.

|〈fr, fs〉|2k =
1

n2k

 n∑
`=1

|α`|2 +
∑
`6=`′

α`α`′

k

=
1

n2k

k∑
p=0

(
k

p

)( n∑
`=1

|α`|2
)k−p∑

` 6=`′
α`α`′

p

.

Using the fact that |α`|2 = 1 gives

E
(
|〈fr, fs〉|2k

)
=

1

nk
+

1

nk

k∑
p=1

(
k

p

)
1

np
E

∑
` 6=`′

α`α`′

p

. (23)

The summation in the second term on the right side in (23) can be expanded as∑
` 6=`′

α`α`′

p

=
∑
` 6=`′

αp`α
p
`′ +

∑
` 6=`′ 6=m6=m′

αp−1
` αp−1

`′ αmαm′ + ... . (24)

By using independence and the characteristic function of a normal random variable
(see (20)), the expectation of each term in the summations on the right side of (24)
can be calculated. For the first term in (24),

E(αp`α
p
`′) = E(Xp

r`X
p
s`X

p
r`′X

p
s`′) = (φ(

2π

ε
p))4 = e−2σ2p2( 2π

ε
)2 .

Thus this term, and similarly other terms that arise in the summation in (23), can
be made arbitrarily small with the choice of ε. The deviation of |〈fr, fs〉|2k from the

13
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expectation can be estimated by an application of Azuma’s Inequality for Doob
martingales as done for k = 1 above.
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[16] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves. Symmetric information-
ally complete quantum measurements. Journal of Mathematical Physics, 45(6):2171
– 2180, 2004.

[17] A. Roy and A. J. Scott. Weighted complex projective 2-designs from bases: Optimal
state determination by orthogonal measurements. Journal of Mathematical Physics,
48(072110), 2007.

14



August 26, 2015 Linear and Multilinear Algebra WelchGeneralizedFrames2015RevisionLMA

[18] A. J. Scott. Tight informationally complete quantum measurements. Journal of
Physics A: Mathematical and General, 39:13507 – 13530, 2006.

[19] R. Shaw. Linear algebra and group representations, volume 2. Academic Press, 1983.
[20] T. Strohmer and R. W. Heath, Jr. Grassmannian frames with applications to coding

and communication. Applied and Computational Harmonic Analysis, 14(3):257–275,
2003.

[21] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Y. C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications.
Cambridge Univ Press, to appear.

[22] S. Waldron. Generalized Welch bound equality sequences are tight frames. IEEE
Transactions on Information Theory, 49(9):2307–2309, 2003.

[23] L. R. Welch. Lower bounds on the maximum cross correlation of signals. IEEE
Transactions on Information Theory, 20(3):397–399, May 1974.

15


