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Abstract. A set of orthogonal polynomials on the unit disk B(0, 1) known as Zernike polynomials are

commonly used in the analysis and evaluation of optical systems. Here Zernike polynomials are used to

construct localized bases and wavelet functions for polynomial subspaces of L2(B(0, 1)). This naturally leads

to a multiresolution analysis of L2(B(0, 1)). Previously, other authors have dealt with the one dimensional

case, and used orthogonal polynomials of a single variable to construct time localized bases for polynomial

subspaces of an L2-space with arbitrary weight. Due to the nature of Zernike polynomials, the wavelet

decomposition that results here is well-suited for the analysis of two-dimensional signals defined on circular

domains. This is shown by some experimental results done on corneal data.
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1. Introduction

1.1. Background. Wavelets can be viewed as a tool to obtain expansions of functions in Hilbert spaces.

Traditionally, a wavelet system is made of a function ψ and all integer translations and dilations of ψ :

ψj,k = 2j/2ψ(2jx− k), x ∈ R, j, k ∈ Z,

such that {ψj,k}j,k∈Z is an orthonormal basis (ONB) of L2(R). The first example of such a ψ was given

by Haar in 1910 [8], and is called the Haar wavelet. Multiresolution analysis (MRA) is a tool to construct

wavelets, and is a central ingredient in wavelet analysis. The general framework of MRA was devised by

Mallat [14] and Meyer [15]. An MRA consists of a nested sequence {Vj}j∈Z of closed subspaces of L2(R),

giving a decomposition of L2(R). In wavelet analysis, a signal f is decomposed into pieces, each subspace

Vj has a piece of f. These pieces, or projections, of f give finer and finer details of f. In connection with

approximation theory, approximation of f in L2(R) can be performed via the projection of f on one of these

subspaces.

When a signal f is represented in terms of a wavelet basis {ψj,k}j,k∈Z, then it can be written as

(1.1) f(x) =
∑
j,k

cj,kψj,k(x).

1
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A representation such as (1.1) gives useful information about when or where a certain frequency occurs in

the signal f. Different frequencies appear with different values of j and this fact is useful in time-frequency or

space-frequency analysis. Slow oscillations of f will lead to nonzero coefficients for small values of j, whereas

fast oscillations will lead to nonzero coefficients for large values of j. The location of a frequency is indicated

by the corresponding k. Such information regarding the location of a frequency is not evident in the Fourier

series or Fourier-Zernike series ((1.6) below) of a signal.

A set of two dimensional orthogonal functions defined on the unit disk B(0, 1), called Zernike polynomials,

is used in the analysis of optical systems by expanding optical wavefront functions as series of these functions

[21, 16]. The Zernike polynomials form an orthonormal basis for L2(B(0, 1)), the space of square integrable

functions on the unit disc, and can thus be used to effectively represent signals on circular domains [21, 16].

In this work, Zernike polynomials have been used to construct localized bases for polynomial subspaces

of L2(B(0, 1)). This is done using kernel polynomials made from Zernike polynomials and exploiting the

property that kernel polynomials are localized. This has been inspired by previous work done in [6] for the

1D case where the authors have used orthogonal polynomials to construct time-localized bases for polynomial

subspaces of an L2-space with arbitrary weight. The construction in [6] is based on the general theory of

kernel polynomials [19], and this has been used there to get a multiresolution analysis (MRA) of a weighted

L2-space that is different from traditional MRA. Similarly, we will be able to get a multiresolution of

L2(B(0, 1)) by decomposing into subspaces that are each spanned by Zernike polynomials of certain degrees

only (indicating signal frequencies). These subspaces are called wavelet spaces. In [11], a decomposition

of the space L2(−1, 1) has been investigated using wavelets from algebraic polynomials using Chebyshev-

weight. Even though multidimensional wavelets have been constructed and studied by some researchers (see,

for example, [13, 7]), such analysis is suited for rectangular domains, and the resulting wavelets are meant

for functions on Rd, d ≥ 2. The wavelet analysis that is proposed here using Zernike polynomials is suitable

for signals on circular domains like that of optical data, and can be useful in the space-frequency analysis

of such data. The primary motivation is efficient representation of 2D signals defined on circular domains,

such as corneal surfaces and certain optical systems; wavelet functions constructed from Zernike polynomials

aim at detecting the location of abonormalities and may be used for characterizing aberrations. We have

implemented our 2D wavelet functions in the reconstruction of corneal data from its wavelets coefficients,

and used the information of the wavelet coefficients to study location of spatial frequency in the data. Our

main goal here is the development of theoretical results, and the numerical experiments have been done to

simply demonstrate the theory.
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1.2. Preliminaries and Notation. Let N0 = {0, 1, 2, 3, . . .} = N∪{0}. The Zernike polynomials are defined

in terms of complex exponentials as

(1.2) Zm
n (r, ϕ) = γmn R

|m|
n (r)eimϕ, 0 ≤ r ≤ 1, 0 ≤ ϕ < 2π,

where n ∈ N0, |m| ≤ n, n−m is even, γmn is the normalization constant given by

γmn =

√
n+ 1

π
∀m,

R
|m|
n are the radial parts of the polynomials given by

(1.3) R|m|
n (r) =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!((n+ |m|)/2− s)!((n− |m|)/2− s)!
rn−2s,

and will be referred to as radial polynomials. When a single index notation is needed, the conversion from

Zm
n to Zj , j ∈ N0, is made by the formula

(1.4) j =
n(n+ 2) +m

2
.

It is known that the Zernike polynomials {Zm
n (r, ϕ)}∞n=0,|m|≤n

(n−m)even

given in (1.2) form a complete orthonormal

set [16] for L2(B(0, 1)), the space of square integrable functions on the unit disk B(0, 1) = {(x, y) ∈ R2 :

x2 + y2 ≤ 1}, with respect to the inner product

(1.5) ⟨f, g⟩ :=
∫ 1

0

∫ 2π

0

f(r, ϕ)g(r, ϕ) r dϕ dr.

In polar form, the Zernike polynomials of (1.2) can be written as

Gm
n (r, ϕ) =

 γmn R
|m|
n (r) cos(mϕ), if m ≥ 0,

γmn R
|m|
n (r) sin(|m|ϕ), if m < 0,

where n ∈ N0, |m| ≤ n, n−m is even, γmn are normalization constants given by

γmn =


√

n+1
π if m = 0√

2(n+1)
π if m ̸= 0,

and R
|m|
n are radial polynomials already given in (1.3). Each Gm

n (r, ϕ) is a polynomial in x, y of degree

n, and {Gm
n (r, ϕ)}∞n=0,|m|≤n

(n−m)even

form a complete orthonormal set in L2(B(0, 1)) with respect to the same inner
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product given above in (1.5) . Any f ∈ L2(B(0, 1)) can be written in terms of Zm
n s or Gm

n s as follows.

f(ρ, θ) =

∞∑
n=0

n∑
m=0

(n−m)even

[Anm cosmθ +Bnm sinmθ]Rm
n (ρ)

=

∞∑
n=0

n∑
m=−n

(n−m)even

cnme
imθR|m|

n (ρ).(1.6)

The connection between the corresponding coefficients is given by the following. For all n ∈ N0, (n −m)

even, m ≤ n,

cnm =
Anm − iBnm

2
, m ∈ N0,

cn(−m) =
Anm + iBnm

2
, m ∈ N,

and for all n,m ∈ N0, (n−m) even, m ≤ n,

Anm = cnm + cn(−m),

Bnm = i(cnm − cn(−m)).

A series as in (1.6) is called the Fourier-Zernike series of f.

For a given pair (ρ, θ) with 0 ≤ ρ ≤ 1 and 0 ≤ θ < 2π, the polynomial

(1.7) KN (r, ϕ; ρ, θ) :=

N∑
n=0

n∑
m=−n

(n−m)even

Zm
n (ρ, θ)Zm

n (r, ϕ)

is called the Nth kernel polynomial with respect to the inner product in (1.5) and the parameters ρ, θ. See

[19] for the general theory of kernel polynomials.

For α = (α1, α2) ∈ N2
0 define

|α| := α1 + α2,

and for x = (x1, x2) in R2,

xα := xα1
1 xα2

2 .

Let

VN := span{xα : |α| ≤ N, x21 + x22 ≤ 1},

i.e., VN is the space of all polynomials in two variables of degree at most N defined on the unit disk B(0, 1).

Here N ∈ N0. The dimension of VN is (N+1)(N+2)
2 [20]. If N = 0, VN is of dimension 1 and is the space

generated by {1}, i.e., the constant functions. In fact, V0 = span{1B(0,1)}, where 1B(0,1) is the characteristic

function of B(0, 1).
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Note that if p ∈ VN then

(1.8) ⟨p,KN (., .; ρ, θ)⟩ =
N∑

n=0

n∑
m=−n

(n−m)even

⟨p, Zm
n ⟩Zm

n (ρ, θ) = p(ρ, θ).

Thus the kernel polynomial KN has the above reproducing property for the space VN . As mentioned earlier,

the notion of a kernel polynomial is the main tool used to construct localized bases for the polynomial

subspaces VN . That the kernel polynomial KN (r, ϕ; ρ, θ) is localized around (ρ, θ) follows from Lemma 2.3

below.

1.3. Outline. In Section 2, scaling functions using Zernike polynomials are defined for the space VN and

various properties of the scaling functions are discussed. Wavelet functions and duals of wavelets are pre-

sented in Section 3 and Section 4, respectively. A multiresolution analysis of L2(B(0, 1)) using the spaces

VN and the scaling functions of Section 2 is discussed in Section 5. Finally, numerical results demonstrating

the theory are given in Section 6.

2. Scaling functions

Fix N ∈ N. In this section, scaling functions for VN are defined using kernel polynomials made of Zernike

polynomials. Some useful properties of scaling functions are presented. Each scaling function for VN is

parametrized by a point (ρ, θ) in B(0, 1), and is localized around this point (Lemma 2.3). This important

property is what enables us to get a localized basis out of a set of scaling functions.

Lemma 2.1. The set {R|m|
n (r)eimϕ}Nn=0,|m|≤n

(n−m) even

1 is an orthogonal basis for VN .

Proof. Note that {R|m|
n (r)eimϕ}Nn=0,|m|≤n

(n−m) even

or {Rm
n (r) cosmϕ,Rm

n (r) sinmϕ}Nn=0,0≤m≤n
(n−m) even

consists of polynomi-

als in x, y of degree up to N [16]. It is also known that this is an orthogonal set. Since the dimension of VN is(
N+2
N

)
= (N+1)(N+2)

2 [20], we just need to show that there are (N+1)(N+2)
2 elements in {Rm

n (r)eimϕ}Nn=0,|m|≤n,

(n−m) even. This will be shown by considering the cases for N being odd and even.

When N is odd, the number of radial polynomials is

NRO = 2 + 4 + · · ·+ (N + 1) = 2(1 + 2 + · · ·+ N + 1

2
) =

(N + 1)(N + 3)

4
.

The number of polynomials in {Rm
n (r) cosmϕ,Rm

n (r) sinmϕ}Nn=0, 0 ≤ m ≤ n, (n − m) even, will then be

given by 2NRO minus the number of radial polynomials for m = 0 i.e., the number of polynomials is

2NRO − N + 1

2
=

(N + 1)(N + 2)

2

1To keep the notation less cumbersome we shall not always write that m− n is even in the subscript.
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as needed.

When N is even, the number of radial polynomials is

NRE = 1 + 3 + 5 + · · ·+ (N + 1) = (1 + 2 + 3 + · · ·+N + 1)− (2 + 4 + · · ·+N)

=
(N + 1)(N + 2)

2
− 2(1 + 2 + · · ·+ N

2
) =

(N + 1)(N + 2)

2
− N(N + 2)

4
=

(
N + 2

2

)2

.

In this case, the number of polynomials in {Rm
n (r) cosmϕ,Rm

n (r) sinmϕ}Nn=0, 0 ≤ m ≤ n, (n−m) even, will

be given by

2NRE −
(
N

2
+ 1

)
=

(N + 1)(N + 2)

2
.

□

A direct consequence of Lemma 2.1 is the following.

Corollary 2.2. The set {Zm
n }Nn=0,|m|≤n

(n−m)even

is an orthonormal basis for VN .

Fix ρ ∈ [0, 1), and θ ∈ [0, 2π). The following Lemma 2.3 indicates that the kernel polynomials defined in

(1.7) are localized around the point (ρ, θ).

Lemma 2.3. For given ρ, θ, consider the following optimization problem

min{∥p∥ : p ∈ VN , p(ρ, θ) = 1}.

The solution to this is given by
∥∥∥KN (r,ϕ;ρ,θ)
KN (ρ,θ;ρ,θ)

∥∥∥ where KN (r, ϕ; ρ, θ) is the kernel polynomial defined in (1.7).

Proof. Let p(r, ϕ) ∈ VN with p(ρ, θ) = 1. Then

p(r, ϕ) =

N∑
n=0

n∑
m=−n

(m−n) even

cnmZ
m
n (r, ϕ).

Thus

∥p∥2 = ⟨p, p⟩ =
N∑

n=0

n∑
m=−n

(m−n) even

|cnm|2.

Using Cauchy-Schwarz we get the following:

1 = |p(ρ, θ)|2 ≤

 N∑
n=0

n∑
m=−n

(m−n) even

|cnm|2


 N∑

n=0

n∑
m=−n

(m−n) even

|Zm
n (ρ, θ)|2


or, 1 ≤ ∥p∥2

N∑
n=0

n∑
m=−n

(m−n) even

(γmn )2(R|m|
n (ρ))2.(2.1)
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By the orthonormality of Zernike polynomials we get

∥KN (r, φ; ρ, θ)∥2 = ⟨KN (r, φ; ρ, θ),KN (r, φ; ρ, θ)⟩

=

〈
N∑

n=0

m=n∑
m=−n,

n−m even

Zm
n (r, φ)Zm

n (ρ, θ),

N∑
n=0

m=n∑
m=−n,

n−m even

Zm
n (r, φ)Zm

n (ρ, θ)

〉

=

N∑
n=0

m=n∑
m=−n,

n−m even

(γmn )2(R|m|
n (ρ))2,(2.2)

and from (1.7) we have

(2.3) KN (ρ, θ; ρ, θ) =

N∑
n=0

n∑
m=−n

(m−n) even

|Zm
n (ρ, θ|2 =

N∑
n=0

m=n∑
m=−n,

n−m even

(γmn )2(R|m|
n (ρ))2.

Combining (2.2), (2.3), and (2.1), we obtain,∥∥∥∥KN (r, ϕ; ρ, θ)

KN (ρ, θ; ρ, θ)

∥∥∥∥2 =
∥KN (r, ϕ; ρ, θ)∥2(∑N

n=0

∑n
m=−n

(m−n) even
(γmn )2(R

|m|
n (ρ))2

)2 =
1∑N

n=0

∑n
m=−n

(m−n) even
(γmn )2(Rm

n (ρ))2
≤ ∥p∥2.

□

Lemma 2.4. The kernel polynomial KN (r, ϕ; ρ, θ) satisfies the Christoffel-Darboux Formula for Zernike

polynomials of radial degree N :

KN (r, ϕ; ρ, θ) =

m=N∑
m=−N

bmN
Zm
N+2(r, ϕ)Z

m
N (ρ, θ)− Zm

N (r, ϕ)Zm
N+2(ρ, θ)

(r2 − ρ2)

+
m=N−1∑

m=−(N−1)

bmN−1

Zm
N+1(r, ϕ)Z

m
N−1(ρ, θ)− Zm

N−1(r, ϕ)Z
m
N+1(ρ, θ)

(r2 − ρ2)
,

where

bmN =
(N + 2)2 −m2

4(N + 2)

1√
(N + 1)(N + 3)

.

Proof. To establish this, we use the following three-term recurrence relation for a set of Zernike polynomials

{Zm
n } from [12]:

r2Zm
n (r, ϕ) = bn−2Z

m
n−2(r, ϕ) + anZ

m
n (r, ϕ) + bnZ

m
n+2(r, ϕ),(2.4)

where

an :=

[
(n+m)2

n
+

(n−m+ 2)2

n+ 2

]
1

4(n+ 1)
.
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Substituting (2.4) in

(2.5) Zm
n+2(r, ϕ)Z

m
n (ρ, θ)− Zm

n (r, ϕ)Zm
n+2(ρ, θ),

and simplifying with the assumption that n and m are even, it follows that

bmn
Zm
n+2(r, ϕ)Z

m
n (ρ, θ)− Zm

n (r, ϕ)Zm
n+2(ρ, θ)

(r2 − ρ2)
= Zm

n (r, ϕ)Zm
n (ρ, θ) + bmn−2

Zm
n (r, ϕ)Zm

n−2(ρ, θ)− Zm
n−2(r, ϕ)Z

m
n (ρ, θ)

(r2 − ρ2)

(2.6)

= Zm
n (r, ϕ)Zm

n (ρ, θ) + Zm
n−2(r, ϕ)Z

m
n−2(ρ, θ) + · · ·+ Zm

0 (r, ϕ)Zm
0 (ρ, θ)+

+ bm−2

Zm
0 (r, ϕ)Zm

−2(ρ, θ)− Zm
−2(r, ϕ)Z

m
0 (ρ, θ)

(r2 − ρ2)

=

n/2∑
k=0

Zm
n−2k(r, ϕ)Z

m
n−2k(ρ, θ)(2.7)

since Zm
−2(·, ·) = 0, |m| ≤ n and n− |m| is even.

Again taking n even, with n − 1 and µ, an odd number, replacing n and m, respectively, in (2.5), and

proceeding in the same way as above, we can write,

bµn−1

Zµ
n+1(r, ϕ)Z

µ
n−1(ρ, θ)− Zµ

n−1(r, ϕ)Z
µ
n+1(ρ, θ)

(r2 − ρ2)
= Zµ

n−1(r, ϕ)Z
µ
n−1(ρ, θ)(2.8)

+ bµn−3

Zµ
n−1(r, ϕ)Z

µ
n−3(ρ, θ)− Zµ

n−3(r, ϕ)Z
µ
n−1(ρ, θ)

(r2 − ρ2)

= Zµ
n−1(r, ϕ)Z

µ
n−1(ρ, θ) + Zµ

n−3(r, ϕ)Z
µ
n−3(ρ, θ) + · · ·+ Zµ

0 (r, ϕ)Z
µ
0 (ρ, θ)+

+ bµ−2

Zµ
0 (r, ϕ)Z

µ
−2(ρ, θ)− Zµ

−2(r, ϕ)Z
µ
0 (ρ, θ)

(r2 − ρ2)

=

(n−1−µ)/2∑
k=0

Zµ
n−1−2k(r, ϕ)Z

µ
n−1−2k(ρ, θ)(2.9)

since Zµ
−2(·, ·) = 0, |µ| ≤ n and n− 1− |µ| is even. For n odd, a similar calculation can be done.

Taking the sum of the series (2.7) for m from −N to N , and that of (2.9) for µ from −(N − 1) to N − 1,

we get the kernel polynomial KN (r, ϕ; ρ, θ), and the corresponding sum of (2.6) and (2.8) gives the right

side of the desired Christoffel-Darboux Formula for Zernike polynomials for even radial degree N . For odd

radial degree N, things work out in a similar fashion.

□

Lemma 2.3 motivates the following definition of scaling functions.
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Definition 2.5. (a) Given N, set k = ⌊N
2 ⌋ + 1. Choose radii {λi}ki=1 according to formula (7) of Section

2.3 in [17] where

1 > λ1 > λ2 > · · · > λk ≥ 0,

and on the ith circle (1 ≤ i ≤ k) choose

ni = 2N + 5− 4i

equally spaced nodes. With this choice, there are J = (N+1)(N+2)
2 points within the unit circle. Such a set of

points in the unit circle will be called regular points.

(b) Let {(ρ(N)
j , θ

(N)
j )}Jj=1 be a set of regular points. The scaling functions are defined as

ϕN,j(r, ϕ) := KN (r, ϕ; ρ
(N)
j , θ

(N)
j ), j = 1, . . . , J.

The basis property of the scaling functions is shown in the following Theorem 2.6. The dual of this basis,

which is needed for reconstruction, is given in part (iv) of Theorem 2.7.

Theorem 2.6. For a given N, let {P (N)
j = (ρ

(N)
j , θ

(N)
j )}Jj=1 be a set of regular points as described in

Definition 2.5. The set

{KN (r, ϕ; ρ
(N)
j , θ

(N)
j )}Jj=1

is a basis of VN . Consequently, the set of scaling functions {ϕN,j(r, ϕ)}Jj=1 is a basis of VN .

Proof. Let {Zj}J−1
j=0 denote the Zernike polynomials enumerated using formula (1.4). Following results in

[17], consider the collocation matrix

AN = [Zj−1(P
(N)
i )]Ji,j=1.

Let A
(i)
N be obtained from AN by replacing the ith row with {Zj−1(x, y)}Jj=1. Under the choice of points

{P (N)
j }Jj=1, the Lagrange interpolating polynomial is uniquely determined [1], the ith fundamental Lagrange

polynomial of degree N is given by

ℓi(x, y) =
1

detAN
det

(
A

(i)
N (x, y)

)
,

and these are characterized by ℓi(P
(N)
j ) = δij .

Note that the size of the set {KN (r, ϕ; ρ
(N)
j , θ

(N)
j }Jj=1 is the same as the dimension of VN . Therefore, to

show that this set is a basis of VN , it is enough to show that it is linearly independent. For convenience of

notation, {KN (r, ϕ; ρ
(N)
j , θ

(N)
j )}Jj=1 will be written as {KN (r, ϕ;P

(N)
j )}Jj=1. Let

(2.10)

J∑
j=1

τjKN (r, ϕ;P
(N)
j ) = 0.
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For a fixed i, take the inner product on both sides of (2.10) with the ith fundamental Lagrange polynomial

ℓi. The reproducing property of the kernel polynomial KN given in (1.8) then gives

0 =

J∑
j=1

τj

〈
ℓi,KN (r, ϕ;P

(N)
j )

〉
=

J∑
j=1

τjℓi(P
(N)
j ) = τi.

Since this holds for each i = 1, . . . , J, the set is linearly independent.

□

Following are some properties of scaling functions. For convenience, a point (ρ
(N)
j , θ

(N)
j ) will be written as

(ρj , θj) or just Pj .

Theorem 2.7. (i) The inner product of the scaling functions may be evaluated as

⟨ϕN,i, ϕN,j⟩ = ϕN,i(Pj)

(ii) The scaling function ϕN,j is localized around Pj . More precisely,∥∥∥∥ϕN,j(r, ϕ)

ϕN,j(Pj)

∥∥∥∥ = min{∥p∥ : p ∈ VN , p(Pj) = 1}.

(iii) The set of scaling functions {ϕN,j}Jj=1 is a basis of VN .

(iv) The dual of the scaling functions {ϕN,j}Jj=1 is given by the fundamental Lagrange interpolating polyno-

mials {ℓj}Jj=1 with respect to the points {Pj}Jj=1 given above.

(v) The scaling function ϕN,j is orthogonal to VN−1 with respect to the modified inner product

⟨ · , ·(· − Pj)⟩ i.e.,

⟨ϕN,j(·, ·) , q(·, ·)(· − Pj)⟩ = 0 for all q ∈ VN−1.

(vi) The scaling function ϕN,j(r, ϕ) satisfies the Christoffel-Darboux formula:

ϕN,j(r, ϕ) =

m=N∑
m=−N

bmN
Zm
N+2(r, ϕ)Z

m
N (Pj)− Zm

N (r, ϕ)Zm
N+2(Pj)

(r2 − ρ2j )

+

m=N−1∑
m=−(N−1)

bmN−1

Zm
N+1(r, ϕ)Z

m
N−1(Pj)− Zm

N−1(r, ϕ)Z
m
N+1(Pj)

(r2 − ρ2j )
.

Proof. (i)

⟨ϕN,i, ϕN,j⟩ = ⟨KN (r, ϕ;Pi),KN (r, ϕ;Pj)⟩ = ϕN,i(Pj)

which is true by the reproducing property of the kernel polynomial KN .

(ii) This follows immediately from Lemma 2.3.

(iii) This follows immediately from Theorem 2.6.
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(iv) The dual {ϕ̃N,j}Jj=1 should satisfy the biorthogonality condition, i.e.,

⟨ϕN,j , ϕ̃N,k⟩ = δjk.

Recall the fundamental Lagrange interpolating polynomials {ℓk(x, y)}Jk=1 with respect to the points {Pj}Jj=1

defined in the proof of Theorem 2.6. Due to the reproducing property of the kernel polynomials we get

⟨ϕN,j , ℓk⟩ = ℓk(Pj) = δjk.

Thus the Lagrange interpolating polynomials {ℓk(x, y)}Jk=1 form the dual of the scaling functions.

(v) Let q ∈ VN−1. Applying the reproducing property of the kernel polynomial given in (1.8) to q(r, ϕ)((r, ϕ)−

Pj) gives

⟨ϕN,j(·, ·) , q(·, ·)(· − Pj)⟩ = q(Pj)(Pj − Pj) = 0.

(vi) This follows from Lemma 2.4. □

Theorem 2.8. Consider a set of regular points {Pj}Jj=1 as described in Definition 2.5. The following

conditions are equivalent regarding the scaling functions {ϕN,j}Jj=1.

(i) The scaling functions form an orthogonal set i.e.,

⟨ϕN,k, ϕN,ℓ⟩ = 0 for k ̸= ℓ.

(ii) The scaling functions satisfy

ϕN,k(Pℓ) = d
(N)
k δkl for k, ℓ = 1, . . . , J

where d
(N)
k ∈ R.

Proof. We first show that (i) implies (ii).

From Theorem 2.7 (i) it is known that

⟨ϕN,k, ϕN,ℓ⟩ = ϕN,k(Pℓ).

Assuming (i) holds, this implies that

ϕN,k(Pℓ) =

 0 if k ̸= ℓ

⟨ϕN,k, ϕN,k⟩ = ∥ϕN,k∥2 if k = ℓ.

Setting d
(N)
k = ∥ϕN,k∥2 for each k = 1, . . . , J gives the required result.

(ii) implies (i) is obvious by Theorem 2.7 (i).

□
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Figure 1. The surfaces and contour lines of the scaling functions for V3.

Figure 2. The surface of a scaling function for V21.

The scaling functions for N = 3 are shown in Figure 1. The values of r and t in the figure represent the

values of ρ and θ, respectively, corresponding to each scaling function, with t being in radians and between

zero and 2π. The localized nature of the scaling functions in not evident in Figure 1 due to the fact that the

value of the maximum degree N of polynomials considered there is too small. For higher values of N , one

can clearly see that the scaling functions are localized. This is shown in Figure 2 for one scaling function

when N = 21 at t = 0 and r = .45, which are the values of θ and ρ, respectively.
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3. Wavelets

In this section, we define wavelet functions in terms of kernel polynomials and present some of their

properties. For N ∈ N0, let JN = (N+1)(N+2)
2 denote the dimension of VN . Consider the sequence of spaces

{VN}∞N=0 where, using Corollary 2.2 and Theorem 2.7 (iii),

VN = span{Zm
n }Nn=0,|m|≤n

(n−m)even

= span{ϕN,j}JN
j=1.

Note that in {ϕN,j}JN
j=1, where ϕN,j = KN (r, ϕ; ρ

(N)
j , θ

(N)
j ), we are considering a set of regular points

{ρ(N)
j , θ

(N)
j )}JN

j=1 as described in Definition 2.5 with J replaced by JN in the notation. For N ∈ N, de-

fine

WN := V2N ⊖ VN = span{Zm
n }2Nn=N+1,|m|≤n

(n−m)even

= span{xα : N < |α| ≤ 2N,α ∈ N2
0},

and

W0 := V1 ⊖ V0 = span{x1, x2}.

For N ∈ N, the dimension of WN is

DN := dim(WN ) = dim(V2N )− dim(VN ) =
(2N + 1)(2N + 2)

2
− (N + 1)(N + 2)

2
=

3N(N + 1)

2
,

and

D0 := dim(W0) = dim(V1)− dim(V0) = 2.

Our target functions, called wavelet functions or wavelets in short, that we wish to form a localized basis for

the space WN , are defined in polar form as

ψN,j(r, ϕ) := K2N (r, ϕ;µ
(N)
j , ω

(N)
j )−KN (r, ϕ;µ

(N)
j , ω

(N)
j )

=

2N∑
n=N+1

n∑
m=−n

(n−m)even

Zm
n (µ

(N)
j , ω

(N)
j )Zm

n (r, ϕ), j = 1, . . . , DN ,(3.1)

=

J2N∑
ℓ=JN+1

Zℓ(µ
(N)
j , ω

(N)
j )Zℓ(r, ϕ), j = 1, . . . , DN ,(3.2)

for a suitable set of parameter points {µ(N)
j , ω

(N)
j )}DN

j=1.

Some properties of the wavelets defined in (3.1) are now given.

Theorem 3.1. Let {ψN,j(r, ϕ)}DN
j=1 be the wavelets as defined in (3.1) with respect to the set {(µ(N)

j , ω
(N)
j )}DN

j=1.

Then the following hold.
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(i)

⟨ψN,j(r, ϕ), ψN,k(r, ϕ)⟩ = ψN,k(µ
(N)
j , ω

(N)
j ).

(ii) The wavelet ψN,j is localized around (µ
(N)
j , ω

(N)
j ), i.e.,∥∥∥∥∥ ψN,j(r, ϕ)

ψN,j(µ
(N)
j , ω

(N)
j )

∥∥∥∥∥ = min{∥ψ∥ : ψ ∈WN , ψ(µ
(N)
j , ω

(N)
j ) = 1}.

(iii) Let {ϕN,j}JN
j=1 be the set of scaling functions in VN based on the set of points {ρ(N)

j , θ
(N)
j }JN

j=1. Then the

wavelets and scaling functions are orthogonal, i.e.,

⟨ψN,j , ϕN,k⟩ = 0; j = 1, . . . , DN , k = 1, . . . , JN .

Proof. (i)

⟨ψN,j(r, ϕ), ψN,k(r, ϕ)⟩ =
〈
K2N (·, ·;µ(N)

j , ω
(N)
j )−KN (·, ·;µ(N)

j , ω
(N)
j ), ψN,k(·, ·)

〉
=

〈
K2N (·, ·;µ(N)

j , ω
(N)
j ), ψN,k(·, ·)

〉
−

〈
KN (·, ·;µ(N)

j , ω
(N)
j ), ψN,k(·, ·)

〉
.(3.3)

Due to the reproducing property of the kernel polynomials, the first term on the right of (3.3) is equal

to ψN,k(µ
(N)
j , ω

(N)
j ). The second term on the right of (3.3) is zero due to orthogonality of the Zernike

polynomials. Thus we have

⟨ψN,j(r, ϕ), ψN,k(r, ϕ)⟩ = ψN,k(µ
(N)
j , ω

(N)
j )

as needed.

(ii) The proof is identical to the proof of Lemma 2.3.

(iii)

⟨ψN,j , ϕN,k⟩ =
〈
K2N (·, ·;µ(N)

j , ω
(N)
j )−KN (·, ·;µ(N)

j , ω
(N)
j ),KN (·, ·; ρ(N)

k , θ
(N)
k )

〉
=

〈
2N∑

n=N+1

n∑
m=−n

(n−m)even

Zm
n (µ

(N)
j , ω

(N)
j )Zm

n (r, ϕ),

N∑
n=0

n∑
m=−n

(n−m)even

Zm
n (ρ

(N)
k , θ

(N)
k )Zm

n (r, ϕ)

〉

= 0

due to orthogonality of the Zernike polynomials.

□

Linear independence of the wavelet functions and the QR algorithm. Considering our goal of

getting bases for the WN s, we note that one cannot expect {ψN,j(r, ϕ)}DN
j=1 to be linearly independent for an

arbitrary set of points {(µ(N)
j , ω

(N)
j )}DN

j=1. Selecting points that will guarantee linear independence of the set
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{ψN,j(r, ϕ)}DN
j=1, along with good conditioning, poses an important and challenging problem. Recently, the

authors were made aware of the iterated QR algorithm that may be used for this purpose [2, 18]. We outline

the main idea here in our setting. Start with a sufficiently large and dense discretization of the unit circle:

{ρi, θi} ⊂ B(0, 1). For the sake of explanation, take {ρi, θi}J2N
i=1 as the set of regular points (Definition 2.5)

used to construct scaling functions for V2N , but if needed, a different set of more densely spaced points can

be taken. Then, let AN be the rectangular Vandermonde matrix

AN = [Zj(ρi, θi)] 1≤i≤J2N
JN<j≤J2N

.

A greedy algorithm, based on the QR factorization, has been shown [2, 18] to extract a nonsingular Vander-

monde submatrix of AN . The resulting DN points that are selected, called “approximate Fekete points”, aim

to “maximize” the Vandermonde determinant absolute value and are thus also “good” interpolation points.

Hence, such a set of points {µ(N)
j , ω

(N)
j }DN

j=1 would be an appropriate candidate for constructing a basis of

wavelets functions for WN .

For our experiments, we have made a random selection of DN points from the set of regular points given

in Definition 2.5 by setting N = 2N there. That is, we take the points needed for scaling functions of V2N

and take a random subset of DN points for the wavelet functions in WN . Figure 3 shows points for N = 3

taken according to Definition 2.5 for the scaling functions. For the wavelets, we take the set of sampling

points needed for scaling functions in V2N , i.e., V6, and then take a subset of D3 = 18 randomly selected

points from that set. Both are shown in Figure 3 . A few wavelet functions constructed by (3.1) are shown in

Figure 4. The values of r and t shown in Figure 4 represent the values of ρ and θ, respectively, corresponding

to each wavelet function, with t being in radians.

4. Dual functions

Even when one has a set of points {(µ(N)
j , ω

(N)
j )}DN

j=1 (say by using a QR algorithm as discussed in Section 3)

so that the wavelet functions constructed from these points is a basis for WN , it may still be impossible to

get orthogonal wavelets. In that case, in order to reconstruct any signal, one needs to find the dual of the

wavelet basis. We illustrate a method of finding a matrix representation for the dual. This approach may

be useful in computations.

Consider a wavelet basis {ψN,j(r, φ)}DN
j=1 of WN . Take f ∈WN . This can be written as

f =

DN∑
j=1

cjψN,j .
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Figure 3. Sampling points; N = 3.

Figure 4. Surfaces and contour lines of some wavelet functions, N = 3.
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The scalars cj are referred to as the wavelet coefficients of f. This is encountered in the numerical examples

in Section 6. Denote the dual of the wavelet basis by {ψ̃N,j(r, ϕ)}DN
j=1. Then f can be written as

f =

DN∑
j=1

⟨f, ψN,j⟩ψ̃N,j .

Due to Corollary 2.2, we know that {Zℓ(r, ϕ)}J2N

ℓ=JN+1 is an ONB for WN = V2N ⊖VN . In terms of this ONB,

the function f can be written as

f =

J2N∑
ℓ=JN+1

f (ℓ)Zℓ(r, ϕ).

Let us identify f with the vector [f (JN+1) . . . f (J2N )]T. Recall that the jth wavelet function is

(4.1) ψN,j(r, ϕ) =

J2N∑
ℓ=JN+1

Zℓ(µj , ωj)Zℓ(r, ϕ),

where the superscript N has been dropped from the parameter points for convenience of notation. We

identify ψN,j(r, ϕ) with the vector [ZJN+1(µj , ωj) ZJN+2(µj , ωj) . . . ZJ2N
(µj , ωj)]

∗, where ∗ represents the

complex conjugate transpose. Consider the matrix AN whose complex conjugate transpose is

A∗
N =



ZJN+1(µ1, ω1) ZJN+1(µ2, ω2) · · · ZJN+1(µDN
, ωDN

)

ZJN+2(µ1, ω1) ZJN+2(µ2, ω2) · · · ZJN+2(µDN
, ωDN

)

...
...

...
...

ZJ2N
(µ1, ω1) ZJ2N

(µ2, ω2) · · · ZJ2N
(µDN

, ωDN
)


.

Note that the jth column of A∗
N represents the jth wavelet function ψN,j . In vector notation, it can be seen

that

ANf =



⟨f, ψN,1⟩

⟨f, ψN,2⟩
...

⟨f, ψN,DN
⟩


.
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Therefore,

A∗
NANf =



ZJN+1(µ1, ω1) ZJN+1(µ2, ω2) · · · ZJN+1(µDN
, ωDN

)

ZJN+2(µ1, ω1) ZJN+2(µ2, ω2) · · · ZJN+2(µDN
, ωDN

)

...
...

...
...

ZJ2N
(µ1, ω1) ZJ2N

(µ2, ω2) · · · ZJ2N
(µDN

, ωDN
)





⟨f, ψN,1⟩

⟨f, ψN,2⟩
...

⟨f, ψN,DN
⟩



= ⟨f, ψN,1⟩



ZJN+1(µ1, ω1)

ZJN+2(µ1, ω1)

...

ZJ2N
(µ1, ω1)


+ · · ·+ ⟨f, ψN,DN

⟩



ZJN+1(µDN
, ωDN

)

ZJN+2(µDN
, ωDN

)

...

ZJ2N
(µDN

, ωDN
)


=

DN∑
j=1

⟨f, ψN,j⟩ψN,j

=⇒ f =

DN∑
j=1

⟨f, ψN,j⟩(A∗
NAN )−1ψN,j =

DN∑
j=1

⟨f, (A∗
NAN )−1ψN,j⟩ψN,j

=⇒ ψ̃N,j = (A∗
NAN )−1ψN,j .

The wavelet functions {ψN,r(r, ϕ)}DN
r=1 form an orthonormal set if and only if A∗

NAN is a diagonal matrix.

Since this may not be possible for the choice of points used to construct the wavelets, one has to compute

(A∗
NAN )−1 and then the dual {ψ̃N,j(r, ϕ)}DN

j=1 to reconstruct f from the wavelet coefficients {⟨f, ψN,j⟩}DN
j=1.

Another way to think about dual functions of wavelets in matrix or vector form is the following. In the

expression given in (4.1), let us consider sampling each function ψN,j at D points. This in turn implies that

we are sampling each Zernike polynomial Zℓ(r, ϕ) at D points so that each Zernike polynomial Zℓ(r, ϕ) can

be thought of as a vector of D elements. Equation (4.1) can then be written as

ψN,j(r, ϕ) = ZJN+1(µj , ωj)ZJN+1(r, ϕ) + · · ·+ ZJ2N
(µj , ωj)ZJ2N

(r, ϕ)

=


| | |

ZJN+1 ZJN+2 · · · ZJ2N

| | |



ZJN+1(µj , ωj)

...

ZJ2N
(µj , ωj)



= B


ZJN+1(µj , ωj)

...

ZJ2N
(µj , ωj)

 .
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Note that B is a D ×DN matrix. Let Ψ be the matrix whose jth column is ψN,j .

Ψ =


| | |

ψN,1 ψN,2 · · · ψN,DN

| | |

 .

Therefore,

(4.2) Ψ = B


ZJN+1(µ1, ω1) · · · ZJN+1(µDN

, ωDN
)

... · · ·
...

ZJ2N
(µ1, ω1) · · · ZJ2N

(µDN
, ωDN

)

 = B A∗
N .

In the language of frame theory [3], the D ×DN matrix Ψ is the synthesis operator of the discretized set of

vectors {ψN,j}DN
j=1, and ΨΨ∗ is the frame operator [3]. The dual wavelet functions, in discretized form, are

then given by

ψ̃N,j = (ΨΨ∗)−1ψN,j = (BA∗
NANB

∗)−1ψN,j .

5. Multiresolution Analysis

The scaling functions defined in Section 2 give rise to a multiresolution analysis (MRA) of L2(B(0, 1))

that is different from the traditional MRA. Recall that VN is the subspace of all polynomials in x, y with

degree at most N . This gives a one-sided MRA starting with V0 that satisfies the following.

(i) V2j ⊂ V2j+1 , j ∈ N0, giving rise to the sequence of nested subspaces starting with V0:

V0 ⊂ V1 ⊂ · · · ⊂ V2j ⊂ V2j+1 ⊂ · · · .

(ii) V0 ∩ (
⋂

j∈N0
V2j ) = V0 = span{1B(0,1)}, where 1B(0,1) is the characteristic function of B(0, 1).

(iii) V0 ∪ (
⋃

j∈N0
V2j ) = L2(B(0, 1)).

(iv) Dilation: p(x, y) ∈ V2j ⇔ p(x2, y2) ∈ V2j+1

f ∈ Vn ⇔ ⟨f, Zm
k ⟩ = 0 for all k > n.

(v) Translation: {ϕN,r}Jr=1 based on a parameter set of regular points (Definition 2.5) is a basis of VN ,

where N = 2j for some j ∈ N0 and J = (N+1)(N+2)
2 .

The last property, determined by the choice of the regular points, takes the role of integer translates in

a standard MRA. For a given function f and a given N that is a power of 2, one can obtain the best

approximation of f in the space VN by considering the orthogonal projection of f on VN . Call this fPN
. We

can write

(5.1) VN = VN
2
⊕WN

2
= VN

4
⊕WN

4
⊕WN

2
= · · · = V0 ⊕W0 ⊕ · · · ⊕WN

2
.
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Note that V0 is spanned by constant polynomials, and we take wavelet functions that form a basis for the

spaces Wj . Thus (5.1) implies that one can write fPN
as a linear combination of the wavelets. Taking higher

values of N will make fPN
a better approximation of f.

At this point, we recollect the advantages of the wavelet representation over the Zernike basis represen-

tation ((1.6), Corollary 2.2). Note that the degrees of the polynomials represent the frequencies; see also

property (iv) above. When f is represented in terms of the Zernike polynomials, a truncation of the series

(1.6) may give a good enough approximation of f, depending on the number of terms taken; however, one

does not have any knowledge of the location of the frequencies corresponding to the coefficients. For a fixed

N, the scaling functions give localized bases of VN , but the scaling functions being kernel polynomials, are

composed of all Zernike polynomials upto a certain degree and hence approximating f by a linear combina-

tion of scaling functions does not give enough information on the frequencies present. However, as seen in

(5.1), the approximation of f in VN , when expressed as a sum of components in theWjs, will give information

on the various frequencies present as well as the location of the frequencies. More precisely, in the wavelet

representation, the degrees of the polynomials contained in eachWj gives the frequency information, whereas

the location of the frequencies comes from the parameter points used to construct the wavelet functions.

6. Numerical results and discussion

In this section we show some experimental results that demonstrate the use of wavelets constructed using

Zernike polynomials. The data used comes from normal subjects, those with corneal astigmatism, and those

with keratoconus. A Medmont E300 videokeratoscope was used to obtain the data.2 The data points for

each subject are stored as a vector C of size D. For the data used, D = 10200. This data, taken from the

right eye of a subject with astigmatism, is shown on the top left of Figure 5. To represent this data as

an approximation in some VN , in terms of Zernike polynomials, we first fix N. For a given N, there are

J = (N + 1)(N + 2)/2 Zernike polynomials with radial degree at most N that form a basis of VN . We can

write [9]

C = Ba,

where B is a D × J matrix whose columns are the J Zernike polynomials (sampled at the D points), and a

is a vector of coefficients. Using the method of least-squares, the coefficient vector a can be estimated as

â = (BTB)−1BTC.

The approximation of the data C in the space VN is

Ĉ = Bâ.

2We thank Dr. D. Robert Iskander for kindly providing the data.
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To start with, we take N = 8, and note that any other power of 2 can be taken; the higher the power, the

better the approximation. The approximation of the (astigmatism) elevation data C in the space V8 is shown

on the top right of Figure 5. Next, we do the same with N replaced by N
2 , i.e., 4 in this case. This gives an

approximation of C in the space V4. The difference between the two levels of approximation will belong to

the space WN
2
which is W4. These are shown in the bottom row of Figure 5.

Using the above idea, for a given N that is a power of 2, one can obtain approximations in the spaces VN ,

VN
2
, VN

4
, and so on. We can write

(6.1) VN = VN
2
⊕WN

2
= VN

4
⊕WN

4
⊕WN

2
= · · · = V0 ⊕W0 ⊕ · · · ⊕WN

2
.

Note that V0 is spanned by constant polynomials, and the choice of N = 8 gives J = 45 which is the

dimension of the subspace V8 as well as the number of Zernike polynomials used to represent V8. This means

that the matrix B above is of size 10200×45. The dimension of the subspace V4 is 15 and so the wavelet space

W4 is of dimension 45 − 15 = 30. The next step is to represent the differences in the Wjs, i.e., the wavelet

spaces, in terms of the wavelet basis functions mentioned in Section 3. For the purpose of experimentation,

for each j, the wavelet basis functions for Wj are constructed using Dj points that are a random subset of

the regular points used to construct scaling functions for V2j (Definition 2.5). As indicated by (6.1), we can

then represent our approximation in the space VN , for a given N, in terms of the wavelet functions only.

Including the constant function needed for V0, the number of wavelet functions needed for N = 8 would also

be 45. The reconstruction of the elevation data of Figure 5 using wavelet functions, the Zernike coefficients,

and the wavelet coefficients are shown in Figure 6. The bottom row in Figure 6 shows the wavelet coefficients

(left) and the difference of the elevation data of Figure 5 with the best-fit-sphere of that data (right). The

difference with the best-fit-sphere (BFS) indicates the ridges and undulations in the data. By looking at the

wavelet coefficients one can determine the locations where the data changes with higher frequencies. The

norm of the difference between the elevation data and the approximation using Zernike polynomials as well

as using wavelet functions is 0.07.

Similar experiments have been performed with data from the right eyes of normal subjects and subjects

with keratoconus using N = 8. An example of each is shown in Figures 7 - 10. The norm of the difference

between the elevation data and the approximation using Zernike polynomials as well as using wavelet func-

tions is 0.0682 in the normal case and 0.1006 for the subject with keratoconus. One would expect better

results giving more information when N is larger. For N = 16, the dimension of V16 is 153 which is the

same as the number of wavelet functions to be used for this value of N. See Figure 11 for the subject with

astigmatism discussed earlier in Figure 5 and Figure 6. Now there are many more wavelet coefficients and

consequently one has a better knowledge of locations of fluctuations in spatial frequency. The norm of the
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difference between the elevation data and the approximation using Zernike polynomials as well as using

wavelet functions is now 0.05. In comparing the wavelet coefficients obtained from N = 8 and N = 16, it

is worth recalling that the wavelet functions for WN are constructed from a random subset of points that

are used to construct the scaling functions for V2N . Each trial, with a given data set and a particular N,

uses a different set of wavelets functions, and this will also effect the location of the most significant wavelet

coefficients. What is seen in Figures 6, 8, 10, and 11 is just from a single trial. However, one can see that for

the same astigmatism data with N = 8 and N = 16, the one for N = 16 (Figure 11) has a lot more wavelet

coefficients and hence gives much more information than the corresponding result for N = 8 (Figure 6). The

difference between two different trials will be less noticeable as N increases and more and more points are

used. The results will be more meaningful with higher values of N at the cost of more computational time.

Table 1 gives a summary of the results shown in the figures. It is seen that the approximation error when

reconstructing using the Zernike basis is the same as when reconstructing using wavelet functions, at least

for the cases that we have used. We would like to emphasize that the Fourier-Zernike series (1.6) only gives

us the magnitude of the frequencies without any knowledge of where the frequencies occur. On the other

hand, each wavelet coefficient can be associated with certain frequencies as well as a location coming from

the parameter point used to construct the corresponding wavelet function. This information may be used

to determine conditions such as astigmatism more efficiently by a wavelet analysis; the spatial-frequency

behavior of a subject with some condition such as astigmatism may be different from that of a normal

subject. However, actually detecting such conditions through wavelet analysis is beyond the scope of this

paper, partly due to limited computer power at our disposal. We just aim to demonstrate the theory.

Apart from the modeling of corneal elevation as illustrated here, there are a variety of other fields having

circular boundary where the present theoretical results can be applied. For example, the wavelet analysis

done here may also be used in feature extraction such as detection of circular shapes in images or textures

in medical imaging [5, 10]. This can also be used in processing radar signals, particularly in the context of

circular radar beams, enabling more accurate target detection [4].

Table 1. Reconstruction of corneal data

Condition Degree No. of polynomials Norm of approx. error Norm of approx. error
N J Zernike basis Wavelet functions

Astigmatism 8 45 0.07 0.07
Normal 8 45 0.0682 0.0682

Keratoconus 8 45 0.1006 0.1006
Astigmatism 16 153 0.05 0.05
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Figure 5. Approximation of elevation data of a subject with astigmatism.

7. Conclusions

In this paper, it is shown how to represent 2D signals on circular domains using representations with a

wavelet structure via kernel polynomials made from Zernike polynomials. The property of a kernel polynomial

that makes it localized about the parameter point and the nature of the Zernike polynomials defined on

circular domains play significant roles in the process. The wavelet coefficients in the signal representation

will indicate the locations of spatial frequencies in the data. When applied to ophthalmic data in the

corneal surface, depending on the magnitude and location of these coefficients, certain aberrations such as

astigmatism may be diagnosed. In feature extraction, image processing, and other applications, locations of

Zernike wavelet coefficients could be related to the abnormalities of materials and images, a vast field to be

explored in future. Our focus here was on development of the theory. Our hope for the future is to obtain

more informative numerical results with the help of more powerful computational tools and better point

selection for the wavelet functions using numerical methods such as the QR algorithm for Fekete points.
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Figure 6. Wavelet and Zernike coefficients of the astigmatism data of Figure 5
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Figure 9. Approximation of elevation data of a subject with keratoconus.
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Figure 10. Wavelet and Zernike coefficients of the data from a subject with keratoconus of Figure 9
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Figure 11. Wavelet and Zernike coefficients of the astigmatism data of Figure 5 using N = 16


