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Abstract

Integration operational matrix methods based on Zernike polynomials are used to determine approxi-
mate solutions of a class of non-homogeneous partial differential equations (PDEs) of first and second
order. Due to the nature of the Zernike polynomials being described in the unit disk, this method is
particularly effective in solving PDEs over a circular region. Further, the proposed method can solve
PDEs with discontinuous Dirichlet and Neumann boundary conditions, and as these discontinuous
functions cannot be defined at some of the Chebyshev or Gauss-Lobatto points, the much acclaimed
pseudo-spectral methods are not directly applicable to such problems. Solving such PDEs is also a
new application of Zernike polynomials as so far the main application of these polynomials seem to
have been in the study of optical aberrations of circularly symmetric optical systems. In the present
method, the given PDE is converted to a system of linear equations of the form Ax = b which may
be solved by both l1 and l2 minimization methods among which the l1 method is found to be more
accurate. Finally, in the expansion of a function in terms of Zernike polynomials, the rate of decay
of the coefficients is given for certain classes of functions.

Keywords: integration operational matrix, Laplace equation, partial differential equations, Zernike
polynomials
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1 Introduction

1.1 Background

If the analytical solution of a partial differential equation (PDE) with a forcing function and given
boundary conditions is difficult, we go for numerical methods as discussed in [4], [18], and [19]. In
many practical cases such as fluid flow in a rotating cylinder, electromagnetic equations in cylindrical
waveguides and optical lens design, and many other cases of a cylindrical or a spherical boundary with
axial symmetry, one needs to solve PDEs over a disk instead of a rectangular boundary [4, 5, 18].

One of the important numerical methods to solve PDEs is using integration operational matrices
(IOMs), first introduced in [9] who showed that integral and differential equations could be reduced
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to a set of linear algebraic equations with an approximation in the sense of least-squares by taking
an orthonormal set of Walsh functions. This approach was subsequently applied to solve PDEs in
rectangular regions using piecewise constant orthogonal functions (PCOF) and orthogonal polynomials
(OP), comprehensive accounts of which are available in [23] and [10]. A set of 2-D orthogonal functions
known as Zernike polynomials and defined on the unit disk is used in the analysis and evaluation of optical
systems with circular pupils by expanding optical wavefront functions in series of these polynomials
[28, 20, 3]. It appears that these polynomials have never been used in the analysis of PDEs and in this
paper they are fruitfully employed to solve PDEs on a disk.

With the above motivation, the main contribution of this paper is a new method of solving PDEs
in circular regions with discontinuous Dirichlet and Neumann boundary conditions using Zernike poly-
nomials and IOMs. In practice, to get an IOM, a pre-selected set of orthogonal functions (OFs) is first
integrated analytically. The result of integration is then expressed in terms of a fixed finite number of
functions in the original set of OFs. This gives an approximation of the integration operator. On the
other hand, for a set of OPs, a three-term derivative recurrence relation is available, which on integration
allows one to express any orthogonal function in the set in terms of the original set of OPs. For the radial
parts of Zernike polynomials, neither a three-term recurrence relation is available, nor on integrating
any radial polynomial in the set can it be expressed automatically in terms of other polynomials in the
set. However, this difficulty can be obviated by using a derivative relation of the radial parts of Zernike
polynomials given in [21], different from the three-term derivative recurrence relation of OPs, which
needs a trivial matrix inversion to get the IOM of the radial parts of Zernike polynomials.

If a known function u(r, θ) is approximated by the Zernike polynomials Rmn (r)eimθ of order (m,n),
m being the azimuthal frequency and n the degree of the radial polynomial Rmn (r), then the radial poly-
nomials of degree higher than n are neglected. In the method proposed here, to obtain the approximate
solution of a PDE, these higher order polynomials are approximated by lower order polynomials with
some reliable interpolation formula such as Lagrange’s, see Remark 2.1, equations (3.7) and (3.8). If this
projection of the neglected polynomials on the space generated by the lower order polynomials is not
done then our IOM method of solving PDEs using Zernike polynomials may fail. In [23], the author used
two dimensional block pulse functions to solve second order PDEs. However, the approximate solutions
did not converge, and this may be attributed to the fact that the above mentioned idea of projecting
higher order terms was not considered.

Using IOMs, a given PDE is reduced to a system of linear equations of the form Ax = b, where
A is a sparse matrix. This must then be solved to obtain an approximate solution of the PDE. This
is usually solved with least squares approximation by using standard matrix pseudo-inverse or Moore-
Penrose inverse and is called l2 method. An alternative method to solve such a sparse system is an
l1-minimization algorithm developed in [6] which is used in this paper and found to be more accurate
than the least squares solution.

As a comparison with some of the existing methods, it may be noted that pseudo-spectral collocation
methods seem unsuited for solving PDEs with discontinuous boundary conditions. In any of the pseudo-
spectral collocation methods, the Chebyshev points:

1
2 (cos iπM + 1), i = 0, 1, . . . ,M

or the Gauss-Lobatto points in the interval [0,1] are chosen so as to minimize Runge phenomenon, and
the boundary conditions (BCs) must be defined at these discrete points. In the problem that we have
considered here in Example 3.1 of Section 3, this would imply that the mixed BCs are discontinuous for
i = M . Therefore, the given boundary conditions will not be defined at one of the collocation points.
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The method proposed here can naturally take care of such discontinuous BCs although Gibbs-Wilbraham
phenomenon will still appear. This is expected when using Fourier series, and cosine and sine functions
are part of the structure of Zernike polynomials.

One of the primary concerns in numerically solving PDEs is the convergence of the solutions. The
ingenuous basis functions developed by Livermore et al. in [17] to apply Galerkin’s method on the disk
and sphere behave asymptotically as Jacobi polynomials for large degree, and so their convergence rates
are similar to the latter polynomials. In the polynomial representation of a function f(x) of one variable,
where the domain is an interval, it is generally true that Chebyshev polynomials give the fastest rate of
convergence from the larger family of Jacobi polynomials except when f(x) is singular at one or both end
points. In this setting, all Gegenbauer polynomials (including Legendre and Chebyshev) converge equally
fast at the endpoints, but Gegenbauer polynomials converge more rapidly on the interior with increasing
order of the degree m. However, for functions on the unit disk, Zernike polynomials are superior in
terms of rate of convergence when compared to Chebyshev-Fourier series [5]. So, in terms of the rate of
convergence, the performance of the method proposed in this paper using the IOM of Zernike polynomials
has the same superiority as discussed in [5]. Moreover, it is also shown in this paper (see Theorem 4.3)
that for functions that are Hölder continuous of order λ, the coefficients Cnm in the expansion of a
function u(r, θ) in terms of Zernike polynomials Rmn (r)eimθ decay at least like m−λ+1, λ ≥ 1. Using
methods similar to the decay of Fourier coefficients for functions of a single variable, a similar result
(Theorem 4.1) is given for functions that are k times continuously differentiable.
Some preliminary ideas underlying the Zernike polynomials are given next.

1.2 Preliminaries and Notation

Zernike polynomials are used to conveniently expand optical wavefront functions that arise in optical
systems with circular pupils [28, 3, 16]. Proposed by F. von Zernike in [28], these polynomials are
orthogonal on the unit disk B(0, 1) = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and can be found in the following way
[28, 20, 3]. To start with, one considers a partial differential equation that is invariant under rotations
of the coordinate axes about the origin. Such an equation has the form:

4U + α

(
x
∂

∂x
+ y

∂

∂y

)2

U + β

(
x
∂

∂x
+ y

∂

∂y

)
U + γU = 0. (1.1)

In polar coordinates r and φ, by using the transformation: x = r cosφ and y = r sinφ, equation (1.1)
becomes

(1 + αr2)
∂2U

∂r2
+

(
1

r
+ (α+ β)r

)
∂U

∂r
+

1

r2

∂2U

∂φ2
+ γU = 0. (1.2)

Choosing α = −1, β = −1, and γ = n(n+ 2) gives the hypergeometric equation

x(1− x)
d2y

dx2
+ (1− 2x)

dy

dx
+

1

4

[
n(n+ 2)− m2

x

]
y = 0. (1.3)

The solution of (1.3) denoted by Rmn (r) is known as the radial part of a Zernike polynomial and is given
by (1.4) below when n, m are non-negative integers, and n−m is even and non-negative, see [20], [22]
and [3]:

Rmn (r) =

n−m
2∑
`=0

(−1)`
(n− `)!

`!(n−m2 − `)!(n+m
2 − `)!

rn−2`. (1.4)
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The radial part of Zernike polynomials can be expressed in terms of classical Jacobi polynomials defined
on the interval [0, 1], as outlined in [27] and [11]. The classical Jacobi polynomials satisfy a three term
recurrence relation, a second order differential equation as (1.3), and interesting properties such as (2.9),
see [1] and [8]. A method of computing the radial parts of Zernike polynomials of arbitrary degree using
the discrete Fourier transform has been discussed in [15]. In [24], a recurrence relation that depends
neither on the degree nor on the azimuthal order of the radial polynomials is developed. The Zernike
polynomials are solutions to (1.1) or (1.2), and are given by

Umn (r, φ) = Rmn (r)(C1 cosmφ+ C2 sinmφ), n ∈ N ∪ {0}, n−m ≥ 0, n−m even, (1.5)

where C1 and C2 are arbitrary constants.
It is worth mentioning that Zernike polynomials is the general name for a class of bivariate orthogonal

polynomials on the unit disk, and they are a particular case of orthogonal polynomials on the unit disk,
see [11]. They are defined by a radial part that is a univariate orthogonal Jacobi polynomial defined on
the interval [0, 1], and a non-radial part that is a bivariate spherical harmonic. The Zernike polynomials
form a complete orthogonal set for the interior of the unit disk B(0, 1), see [2, 20, 3]. They can therefore
be normalized to form an orthonormal basis for the space L2(B(0, 1)), see Section 4. Let f(r, φ) be
an arbitrary function defined on B(0, 1). In terms of the Zernike polynomials given in (1.5), f can be
represented as [28, 3]

f(r, φ) =

∞∑
n=0

∑
0≤m≤n
n−m even

(Anm cosmφ+Bnm sinmφ)Rmn (r) (1.6)

where

Anm =
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

f(r, φ) cosmφRmn (r)rdφdr,Bnm =
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

f(r, φ) sinmφRmn (r)rdφdr,

(1.7)
and εm is the Neumann factor:

εm =

{
1 if m = 0,
2 otherwise.

An efficient algorithm for calculating the coefficients Anm and Bnm is discussed in [22], see also [14]. An
approximation of f of order (m,n) can then be calculated as

f(r, φ) =

n∑
i=0

m∑
0≤j≤i
i−j even

(Aij cos jφ+Bij sin jφ)Rji (r).

For details on the properties of Zernike polynomials the reader is referred to [20] and [3]. In the context of
opto-mechanical analysis by finite element methods, a Zernike polynomial representation of the surface
distortions is found to be better than by other orthogonal functions [12].

At times it will be convenient to write a product of matrices in a vector and tensor product form.
In such cases, a matrix P of size m × n is represented as a vector of size mn, and written as vec(P ).
The tensor product of matrices is denoted by ⊗. To clarify, let A, B, X, and Y be 2 × 2 matrices and
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consider

Y = AXB

or,

[
y1 y2

y3 y4

]
=

[
a11 a12

a21 a22

] [
x1 x2

x3 x4

] [
b11 b12

b21 b22

]

or,


y1

y2

y3

y4

 =


a11b11 a12b11 a11b21 a12b21

a21b11 a22b11 a21b21 a22b21

a11b12 a12b12 a11b22 a12b22

a21b12 a22b12 a21b22 a22b22



x1

x2

x3

x4


=⇒ vec(Y ) = (BT ⊗A)vec(X) (1.8)

The above method of transforming a linear system of matrix unknowns to a linear system involving
a vector of unknowns by means of tensor product (also known as Kronecker product) is well known
(Chapter 4; [13]).

1.3 Outline

The remaining part of the paper is organized as follows. Section 2 discusses the solution of a first
order PDE by using the IOM method with Zernike polynomials, and the accuracy of the method is
shown by means of a specific example. Section 3 discusses the solution of a second order PDE by
using the IOM method with Zernike polynomials. The results of the proposed method are applied to a
particular Laplace equation. Surface plots of the solutions and error estimates are provided for various
orders of approximation. Section 4 provides some results related to the decay of the Zernike coefficients
of functions that are k times continuously differentiable and ones that are Hölder continuous. Some
derivations in obtaining the IOMs are given in Section 5, and Section 6 has some concluding remarks
including future directions.

2 Solving first order partial differential equations using inte-
gration operational matrix

A linear first order partial differential equation (FOPDE) in u(x, y) with forcing function f(x, y) has the
general form

α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
+ γ(x, y)u = f(x, y). (2.1)

In general, getting the analytical solution of (2.1), subject to some boundary conditions, is often not
feasible or too cumbersome. Consequently, one seeks numerical methods to solve such problems. This
section describes such a technique using the integrational operational matrix (IOM) of Zernike polyno-
mials. The technique shown below can be adapted for some given α, β, γ. For the sake of demonstration,
we consider the following form of a FOPDE:

αx
∂u

∂x
+ βy

∂u

∂y
+ γu = f, (2.2)

where α, β, and γ are constants. Changing (2.2) to polar coordinates (r, φ) gives

r(α cos2 φ+ β sin2 φ)
∂u

∂r
− (α− β) sinφ cosφ

∂u

∂φ
+ γu = f. (2.3)
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Equation (2.3) has to be solved subject to the boundary conditions

u(r0, φ) = h(φ),

u(r, φ0) = g(r).

Integrating (2.3) first with respect to r from r0 to r and then with respect to φ from φ0 to φ using
integration by parts and the given boundary conditions gives

αr

∫ φ

φ0

u cos2 φ dφ+ βr

∫ φ

φ0

u sin2 φ dφ− r0

∫ φ

φ0

h(φ)(α cos2 φ+ β sin2 φ) dφ −

−
∫ φ

φ0

(α cos2 φ+ β sin2 φ)

[∫ r

r0

u dr

]
dφ− (α− β)

2

[∫ r

r0

sin 2φ u(r, φ)− sin 2φ0

∫ r

r0

g(r) dr

−2

∫ r

r0

∫ φ

φ0

u cos 2φ dφ dr

]
+ γ

∫ φ

φ0

∫ r

r0

u drdφ =

∫ φ

φ0

∫ r

r0

f drdφ. (2.4)

To solve for u, matrix representations for the integral operators, the forcing function f, and the unknown
u, in terms of trigonometric and radial parts of Zernike polynomials, are needed. The idea is to write
every term in (2.4) in terms of an integration operational matrix and reduce (2.4) to an algebraic
equation.

Let the trigonometric functions be written as a vector

Φ(φ) = [1, cosφ, sinφ, cos 2φ, sin 2φ, · · · ]T.

For practical purposes, only a finite number of terms of Φ can be used. If only terms up to azimuthal
frequency mφ are used, then, by an abuse of notation, we shall also denote by Φ the resulting vector of
size M = 2m+ 1, i.e.,

Φ(φ) = [1, cosφ, sinφ, cos 2φ, sin 2φ, · · · , cosmφ, sinmφ]T,

and ∫ φ

φ0

Φ(φ) dφ = [φ− φ0, sinφ− sinφ0,− cosφ+ cosφ0,
sin 2φ

2
− sin 2φ0

2
,

· · · , sinmφ

m
− sinmφ0

m
,−cosmφ

m
+

cosmφ0

m
]T.

In order to express the above integral in matrix form, the φ appearing on the right side has to be
expressed in terms of {1, cosφ, sinφ, cos 2φ, sin 2φ, . . .}. To achieve this, we take the Fourier series
expansion of φ over [0, 2π] which is

φ = π −
∞∑
k=1

2

k
sin kφ.
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This yields

∫ φ

φ0

Φ(φ) dφ =



π − φ0 0 −2 0 −1 0 − 2
3 · · · 0 − 2

m
− sinφ0 0 1 0 0 0 0 · · · 0 0
cosφ0 −1 0 0 0 0 0 · · · 0 0
− sin 2φ0

2 0 0 0 1
2 0 0 · · · 0 0

cos 2φ0

2 0 0 − 1
2 0 0 0 · · · 0 0

...
...

...
...

...
...

... · · ·
...

...
− sinmφ0

m 0 0 0 0 0 0 · · · 0 1
m

cosmφ0

m 0 0 0 0 0 0 · · · − 1
m 0





1
cosφ
sinφ

cos 2φ
sin 2φ

...
cosmφ
sinmφ


= Eφφ0Φ.

The radial parts of Zernike polynomials Rmn (r) can be written sequentially as an infinite vector as

R(r) = [R0
0(r), R1

1(r), R0
2(r), R2

2(r), R1
3(r), R3

3(r), . . . , Rmn (r), . . .]T, n ∈ N∪ {0}, 0 ≤ n−m, n−m even.

For a fixed n, the number of radial polynomials of degree less than or equal to n is denoted by N . Thus,
for approximation with radial polynomials with degree up to n, only N elements of the above vector
R(r) are used. As in the case of Φ, by an abuse of notation, this is also denoted by R(r) and is given by

R(r) = [R0
0(r), R1

1(r), R0
2(r), R2

2(r), R1
3(r), R3

3(r), . . . , Rmn (r)]T, n ∈ N ∪ {0}, 0 ≤ n−m, n−m even.

The solution u represented in terms of the Zernike polynomials then results in an approximation

ũ = ΦTUR, (2.5)

where U contains the coefficients of u with respect to the polynomials up to a chosen degree. To help in
understanding, first consider the first term on the left side of (2.4). This can be written as

αr

∫ φ

φ0

cos2 φΦTUR dφ. (2.6)

Take φ0 = 0. Then∫ φ

0
cos2 φ Φ(φ) dφ =



π
2

0 −1 0 − 1
4

0 − 1
3

0 − 1
4

0 − 1
5

· · · 0 −1
m−2

0 −1
m−1

0 −1
m

0 0 3
4

0 0 0 1
12

0 0 0 0 · · · 0 0 0 0 0 0
1
3

− 1
4

0 0 0 − 1
12

0 0 0 0 0 · · · 0 0 0 0 0 0

π/4 0 − 1
2

0 0 0 − 1
6

0 − 1
16

0 − 1
10

· · · 0 −1
2(m−2)

0 − 1
2(m−1)

0 −1
2m

5
16

0 0 − 1
4

0 0 0 − 1
16

0 0 0 · · · 0 0 0 0 0 0

0 0 1
4

0 0 0 1
6

0 0 0 1
20

· · · 0 0 0 0 0 0
7
15

− 1
4

0 0 0 − 1
6

0 0 0 − 1
20

0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 0 · · · 0 1

4(m−2)
0 0 0 1

2m

x1 0 0 0 0 0 0 0 0 0 0 · · · −1
4(m−2)

0 0 0 −1
2m

0





1
cosφ
sinφ

cos 2φ
sin 2φ
cos 3φ
sin 3φ
cos 4φ
sin 4φ
cos 5φ
sin 5φ

...
cosmφ
sinmφ


= Ecos2 φ

φ Φ(φ),
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where x1 = 1
2m + 1

4(m−2) + 1
4(m+2) in the last row of the matrix,∫ φ

0
sin2 φ Φ(φ) dφ =



π
2

0 −1 0 − 3
4

0 − 1
3

0 − 1
4

0 − 1
5

· · · 0 −1
m−2

0 −1
m−1

0 −1
m

0 0 1
4

0 0 0 − 1
12

0 0 0 0 · · · 0 0 0 0 0 0
2
3

− 3
4

0 0 0 1
12

0 0 0 0 0 · · · 0 0 0 0 0 0

−π
4

0 1
2

0 1
2

0 1
6

0 1
8

0 1
10

· · · 0 1
2(m−2)

0 1
2(m−1)

0 1
2m

3
16

0 0 − 1
4

0 0 0 1
16

0 0 0 · · · 0 0 0 0 0 0

0 0 − 1
4

0 0 0 1
6

0 0 0 − 1
20

· · · 0 0 0 0 0 0
−2
15

1
4

0 0 0 − 1
6

0 0 0 1
20

0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0 0 · · · 0 −1
4(m−2)

0 0 0 1
2m

x2 0 0 0 0 0 0 0 0 0 0 · · · 1
4(m−2)

0 0 0 −1
2m

0





1
cosφ
sinφ

cos 2φ
sin 2φ
cos 3φ
sin 3φ
cos 4φ
sin 4φ
cos 5φ
sin 5φ

..

.
cosmφ
sinmφ


= Esin2 φ

φ Φ(φ),

where x2 = 1
2m −

1
4(m−2) −

1
4(m+2) in the last row of the matrix,

and∫ φ

0
cos 2φ Φ(φ) dφ =



0 0 0 0 1
2

0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 1
2

0 0 0 1
6

0 0 0 0 · · · 0 0 0 0 0 0

− 1
3

1
2

0 0 0 − 1
6

0 0 0 0 0 · · · 0 0 0 0 0 0
π
2

0 −1 0 − 1
2

0 − 1
3

0 − 1
8

0 0 · · · 0 − 1
m−2

0 − 1
m−1

0 − 1
m

1
8

0 0 0 0 0 0 − 1
8

0 0 0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 0 · · · 0 1

2(m−2)
0 0 0 0

x3 0 0 0 0 0 0 0 0 0 0 · · · − 1
2(m−2)

0 0 0 0 0





1
cosφ
sinφ

cos 2φ
sin 2φ
cos 3φ
sin 3φ
cos 4φ
sin 4φ
cos 5φ
sin 5φ

...
cosmφ
sinmφ



= Ecos 2φ
φ Φ(φ).

where x3 = 1
2(m+2) + 1

2(m−2) in the last row of the matrix.

When one considers integrating from some angle φ0 to φ instead of from zero to φ then the follow-

ing adjustments have to be made. The first column of Ecos2 φ
φ changes to

π
2 −

φ0

2 −
sin 2φ0

4

− 3
4 sinφ0 − sin 3φ0

12
cosφ0

4 + cos 3φ0

12
...

− sin(m−2)φ0

4(m−2) − sinmφ0

2m − sin(m+2)φ0

4(m+2)
cos(m−2)φ0

4(m−2) + cosmφ0

2m + cos(m+2)φ0

4(m+2)


,
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and the resulting matrix will be denoted by Ecos2 φ
φφ0

. � The first column of Esin2 φ
φ changes to

π
2 −

φ0

2 + sin 2φ0

4

− 1
4 sinφ0 + sin 3φ0

12
3
4 cosφ0 − cos 3φ0

12
...

sin(m−2)φ0

4(m−2) − sinmφ0

2m + sin(m+2)φ0

4(m+2)

− cos(m−2)φ0

4(m−2) + cosmφ0

2m − cos(m+2)φ0

4(m+2)


,

and the resulting matrix will be denoted by Esin2 φ
φφ0

. The first column of Ecos 2φ
φ becomes

− sin 2φ0

2

− sinφ0

2 − sin 3φ0

6

− cosφ0

2 + cos 3φ0

6

−φ0

2 −
sin 4φ0

8
π
2 −

φ0

2 −
sin 4φ0

8
cos 4φ0

8
...

− sin(m−2)φ0

2(m−2) − sin(m+2)φ0

2(m+2)
cos(m−2)φ0

2(m−2) + cos(m+2)φ0

2(m+2)


,

and the resulting matrix will be denoted by Ecos 2φ
φφ0

. For demonstration purposes, to keep things less
cumbersome, the radial parts of Zernike polynomials up to degree three will be used below, and will be
denoted by the vector R(r).

R(r) = [R0
0(r), R1

1(r), R0
2(r), R2

2(r), R1
3(r), R3

3(r)]T = [1, r, 2r2 − 1, r2, 3r3 − 2r, r3]T. (2.7)

In (2.6), rR(r) can be approximated as

rR(r) =


r
r2

2r3 − r
r3

3r4 − 2r2

r4

 ≈


0 1 0 0 0 0
0 0 0 1 0 0
0 −1 0 0 0 2
0 0 0 0 0 1
0 0 0 −2 0 0
0 0 0 0 0 0




1
r

2r2 − 1
r2

3r3 − 2r
r3

 = Mr
RR(r). (2.8)

In (2.8), the higher order terms involving r4 are ignored making the last row of Mr
R equal to zero.

See Remark 2.1 for how to get a better approximation by projecting terms involving r4 on the space
generated by R(r). The first two terms of (2.4) can thus be written as �

αr

∫ φ

φ0

u cos2 φ dφ+ βr

∫ φ

φ0

u sin2 φ dφ = αΦT

(
Ecos2 φ
φφ0

)T

UMr
RR+ βΦT

(
Esin2 φ
φφ0

)T

UMr
RR.

�In general, an integration operational matrix will be denoted by E, the subscript indicating the limits of integration
while the superscript indicating the integrand.

�Strictly speaking, the resulting matrix representation is an approximation of some integral. However, we will always
use the equality sign to express that the operators on the right side of the equality stand for corresponding integrals on
the left side.
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The function h(φ) is expanded in terms of trigonometric functions as

h(φ) = hTΦ(φ) = Φ(φ)Th,

where h contains the coefficients of h in terms of the functions in Φ. Also, r0 can be expressed as

r0 = MT

r0R(r),

where Mr0 is a vector whose first entry is r0 and the rest are zero. These expressions for h(φ) and r0

transform the third term in (2.4) to

r0

∫ φ

φ0

h(φ)(α cos2 φ+ β sin2 φ) dφ = αΦT

(
Ecos2 φ
φφ0

)T

hMT

r0R(r) + βΦT

(
Esin2 φ
φφ0

)T

hMT

r0R(r).

Using the recurrence relation given in [21] and [22]∫ r

r0

[
Rmn (r) +Rm+2

n (r)
]
dr =

1

n+ 1

[
Rm+1
n+1 (r)−Rm+1

n−1 (r)
] ∣∣∣r
r0
, (2.9)

gives

∫ r

r0

R(ρ) dρ ≈


−R1

1(r0) 1 0 0 0 0
− 1

2R
2
2(r0) 0 0 1

2 0 0
− 1

3

[
R1

3(r0)−R1
1(r0)−R3

3(r0)
]
− 1

3 0 0 1
3 −

1
3

− 1
3R

3
3(r0) 0 0 0 0 1

3
− 1

4

[
R2

4(r0)−R2
2(r0)−R4

4(r0)
]

0 0 −1 0 0
− 1

4R
4
4(r0) 0 0 0 0 0

R(r) = Err0R(r), (2.10)

where recall that R0
0(r) = 1, R1

1(r) = r, R0
2(r) = 2r2 − 1, R2

2(r) = r2, R1
3(r) = 3r3 − 2r, and R3

3(r) = r3.
Once again, as in (2.8), the higher order terms involving r4 are ignored resulting in zeros in the last row
of Err0 in (2.10), see Remark 2.1. Even though the derivation here uses only radial parts of Zernike
polynomials up to degree three, the general expression of the integration operational matrix Err0 , using
all radial polynomials up to some given degree n, is given in Section 5. Using (2.10), the fourth term of
(2.4) is

α

∫ φ

φ0

cos2 φ

[∫ r

r0

u dr

]
dφ = α

∫ φ

φ0

cos2 φ

∫ r

r0

ΦTUR dr dφ = α

∫ φ

φ0

cos2 φ ΦT dφ U

∫ r

r0

R dr

= α
(
Ecos2 φ
φφ0

Φ
)T

UErr0R,

and similarly

β

∫ φ

φ0

sin2 φ

[∫ r

r0

u dr

]
dφ = β

(
Esin2 φ
φφ0

Φ
)T

UErr0R.

If sin 2φΦ is written as
sin 2φΦ = M sin 2φ

Φ Φ

then
α− β

2

∫ r

r0

sin 2φ u(r, φ) dr =

∫ r

r0

sin 2φΦTUR dr = ΦT

(
M sin 2φ

Φ

)T

UErR.
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Expressing g(r) as
g(r) = gTR(r)

gives ∫ r

r0

g(r) dr =

∫ r

r0

gTR(r) dr = gTErr0R(r).

Also, sin 2φ0 can be expressed as

sin 2φ0 = MT

sin 2φ0
Φ(φ) = Φ(φ)TMsin 2φ0 ,

where Msin 2φ0 is a vector whose first entry is sin 2φ0 and the rest are zero. Therefore,

α− β
2

sin 2φ0

∫ r

r0

g(r) dr =
α− β

2
ΦTMsin 2φ0g

TErr0R(r).

In matrix form, ∫ φ

φ0

cos 2φΦ = Ecos 2φ
φφ0

Φ,

and thus
α− β

2
· 2
∫ r

r0

∫ φ

φ0

u cos 2φ dφ dr = (α− β) ΦT

(
Ecos 2φ
φφ0

)T

UErr0R.

The last term on the left side of (2.4) becomes, in matrix form,

γ

∫ φ

φ0

∫ r

r0

u dr dφ = γ

∫ φ

φ0

∫ r

r0

ΦTUR dr dφ = γ

(∫ φ

φ0

ΦT dφ

)
U

(∫ r

r0

R dr

)
= γ(Eφφ0

Φ)TUErr0R.

Finally, expressing the forcing function f in terms of the Zernike polynomials as

f = ΦTFR,

where F contains the coefficients of f, the integral on the right side of (2.4) can be written as∫ φ

φ0

∫ r

r0

f dr dφ = (Eφφ0
Φ)TFErr0R.

The operator matrices and the corresponding notation are summarized below:

1.
∫ φ
φ0

Φ dφ = Eφφ0
Φ.

2.
∫ φ
φ0

cos2 φ Φ dφ = Ecos2 φ
φφ0

Φ.

3.
∫ φ
φ0

sin2 φ Φ dφ = Esin2 φ
φφ0

Φ.

4.
∫ r
r0
R(r) dr = Err0R(r).
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5.
∫ φ
φ0

cos 2φ Φ dφ = Ecos 2φ
φφ0

Φ.

Putting everything together, (2.4) reduces to the algebraic equation

ΦT

[
α
(
Ecos2 φ
φφ0

)T

UMr
R + β

(
Esin2 φ
φφ0

)T

UMr
R − α

(
Ecos2 φ
φφ0

)T

hMT

r0 − β
(
Esin2 φ
φφ0

)T

hMT

r0

− α
(
Ecos2 φ
φφ0

)T

UErr0 − β
(
Esin2 φ
φφ0

)T

UErr0 −
(α− β)

2

(
M sin 2φ

Φ

)T

UErr0 +
α− β

2
Msin 2φ0g

TErr0

+ (α− β)
(
Ecos 2φ
φφ0

)T

UErr0 + γET

φφ0
UErr0

]
R(r) = ΦTET

φφ0
FErr0R(r). (2.11)

Equation (2.11) has to be solved for the matrix U to get an approximation of the solution u of the
original PDE (2.3). To solve for U, it is convenient to rewrite (2.11) using the vector and tensor product
representation introduced in (1.8) of Section 1. With this notation, (2.11) becomes(

αMr
R

T ⊗
(
Ecos 2φ
φφ0

)T

+ βMr
R

T ⊗
(
Esin 2φ
φφ0

)T

− αET

rr0 ⊗
(
Ecos 2φ
φφ0

)T

− βET

rr0 ⊗
(
Esin 2φ
φφ0

)T

− α− β
2

ET

rr0 ⊗
(
M sin 2φ
φ

)T

+ (α− β)ET

rr0 ⊗
(
Ecos 2φ
φφ0

)T

+ γET

rr0 ⊗ E
T

φφ0

)
vec(U)

= vec

(
ET

φφ0
FErr0 + α

(
Ecos2 φ
φφ0

)T

hMT

r0 + β
(
Esin2 φ
φφ0

)T

hMT

r0 −
α− β

2
Msin 2φ0g

TErr0

)
(2.12)

which can be thought of as a linear system
Ax = b, (2.13)

where x = vec(U) is an unknown vector of size MN , b is a known vector also of size MN, and A is
a sparse matrix of order MN . The solution x is then reshaped as an M × N matrix U which gives
the approximate solution ũ(r, φ) = ΦT (φ)UR(r) in (2.5). One can consider solving (2.13) in two ways.
One way is to get the minimum norm least squares solution x = A†b where A† is the standard matrix
pseudo-inverse or Moore-Penrose inverse of A. This pseudo-inverse exists and unique for any matrix.
The solution provided by A†b is a least squares minimum norm solution and is called here the l2 solution.
The other way is to get the minimum l1-norm solution by linear programming using l1-magic [6]. In the
latter case, the problem is formulated as

Minimize |x1|+ · · ·+ |xMN | subject to Ax = b.

Remark 2.1. It is important to say a few words on the operational matrices Mr
R and Err0 in (2.8) and

(2.10), respectively. In obtaining these matrices, all terms of degree greater than n = 3 have been ne-
glected. For the sake of higher accuracy of the solution, these neglected terms can be represented in terms
of the radial polynomials in R(r), see(2.7), by projecting on the space spanned by R(r). Alternatively, a
Lagrange interpolation polynomial can be constructed using R(r) to represent each of the neglected higher
order terms. The calculated coefficients in the representation of these higher order terms can then be
used in the integration operational matrix as explained in connection with (3.7) in the next section.

In the case of the FOPDE in Example 2.2 below, when the projection of higher order terms is not
considered, the solution surface with the l1 method is found to be acceptable when compared with the
actual solution but quite distorted with the l2 method. It is found that projecting these higher order
terms on the space of lower order radial polynomials yields solutions with higher accuracy in both the l1
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and l2 methods. This method of projection has been used to obtain the results in Example 2.2 that are
shown in Figure 1 although we have not displayed the updated matrices considering the projections in
our calculations above. We have shown this for the case of a second order PDE in Section 3. In the
case of a second order PDE, as discussed in Section 3, this method of projection is found to be crucial
in getting a satisfactory solution.

Example 2.2. Let α = 1, β = −1, γ = 1, and f = er cosφ(1 + r cosφ) in (2.2) and (2.3). With this
choice one can proceed to solve the following initial value problem:

r cos 2φ
∂u

∂r
− sin 2φ

∂u

∂φ
+ u = er cosφ(1 + r cosφ) (2.14)

subject to the initial conditions

u(0, φ) = 1,

u(r, 0) = er.

It can be checked by direct substitution that u(r, φ) = er cosφ is a solution to the above initial value
problem (2.14). By keeping terms of degree at most three in the expansion by Zernike polynomials, an
approximation of the actual solution u(r, φ) = er cosφ is

ũ(r, φ) = 1 + r cosφ+
1

2
r2 cos2 φ+

1

6
r3 cos3 φ = 1 + r cosφ+

1

4
r2 cos 2φ+

1

24
r3 cos 3φ+

1

8
r3 cosφ

= ΦT(φ)UR(r),

where

U =



1 0 0 1
4 0 0

0 1 0 0 0 1
8

0 0 0 0 0 0
0 0 0 1

4 0 0
0 0 0 0 0 0
0 0 0 0 0 1

24
0 0 0 0 0 0


.

Expanding the forcing function f in terms of the Zernike polynomials, up to an approximation of order
three, gives

f(r, φ) = er cosφ(1 + r cosφ) = 1 + 2r cosφ+
3

4
r2 +

3

4
r2 cos 2φ+

r3

2
cosφ+

r3

6
cos 3φ

= ΦT(φ)FR(r) (2.15)

where

F =



1 0 0 3
4 0 0

0 2 0 0 0 1
2

0 0 0 0 0 0
0 0 0 3

4 0 0
0 0 0 0 0 0
0 0 0 0 0 1

3
0 0 0 0 0 0


.
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The other unknowns in (2.11) are the vectors h and g which can be substituted as follows. Let

hT = [ 1 0 0 0 0 0 0 ] .

Then h(φ) = hTΦ(φ) = 1 as needed. Let

gT =
[

1 1 0 1
2 0 1

6

]
.

Then

gTR(r) =
[

1 1 0 1
2 0 1

6

]


1
r
2r2 − 1
r2

3r3 − 2r
r3

 = 1 + r +
1

2
r2 +

1

6
r3

which can be thought of as the approximation of g(r) = er using terms of degree at most three. These
specific vectors are then used in (2.12) to solve for the unknown U. The minimum least squares solution
using MATLAB is x = psinv(A)y from which converting vector x to matrix U we get

U = vec2mat(x) =


1 0 0 0.25 0 0
0 0.2 0 0 −0.4 0
0 0 0 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

which in terms of Zernike polynomials is

ũ(r, φ) = 1 +
1

4
r2 + 0.2r cosφ− 0.4(3r3 − 2r) cosφ+

1

4
r2 cos 2φ

= 1 + r cosφ+
1

4
r2(1 + cos 2φ)− 6

5
r3 cosφ.

Alternatively, using an l1 optimization algorithm based on basis pursuit as explained in [6] the solution
matrix for U is

U = vec2mat(x) =


1 0 0 0.25 0 0
0 0 0 0 −0.5 0
0 0 0 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
which gives

ũ(r, φ) = 1 +
1

4
r2(1 + cos 2φ)− 1

2
(3r2 − 2r) cosφ = 1 + r cosφ+

1

4
r2(1 + cos 2φ)− 3

2
r3 cosφ.

Both of these may be compared with the exact solution mentioned at the start of the example.
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Figure 1: FOPDE: Solution surfaces and contour lines.
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Figure 2: FOPDE solution: log of error curve with Lagrange approximation of higher order terms.

Table 1: Errors in solving FOPDE

Order of Zernike pol. 7 × 6 9 × 9 11 × 12 13 × 16 15 × 20 17 × 25 19 × 30 21 × 36

`2-error (order 10−4) 783.0700 13.2580 33.1340 24.0200 239.6800 3.1834 187.5100 5.8121

`1-error (order 10−4) 14.7180 2.8439 2.7084 2.9555 2.7794 2.7793 2.6274 3.0066

Error estimates Recall that the sizes of Φ(φ) and R(r) are M and N, respectively. To study the error
for different orders of approximation, the solution of FOPDE (2.14) has been determined numerically for
the pair (M,N) to be (7,6), (9,9), (11,12), (13,16), (15,20), (17,25), (19,30) and (21,36). The solution
surfaces have then been compared with that generated by the exact solution. To do this, one needs to
solve (2.13): Ax = b. Recall that A is a sparse matrix of order MN, and M = 21 and N = 36 for the
highest order of approximation considered. The surfaces and contour lines for values of (M,N) equal
to (7,6), (15,20) and (21,36) obtained by the minimum l1-norm solution are shown in Figure 1 which
may be compared with the actual solution surface and contour lines, also displayed in Figure 1. The
surfaces provided by the minimum norm least squares solution are much inferior to the minimum l1-norm
solution, and not shown here. The Mean Square Error (MSE) between the actual and the computed
solution is given by the mathematical formula:

MSE = 1
m1n1

m1∑
1

n1∑
1

[X(i, j)−Xc(i, j)]
2,

where X(x, y) represents the actual solution surface, Xc(x, y), the computed surface, and m1 × n1 are
the number of grid points on the surface. By comparing the minimum l1-norm solution with that of
the minimum norm least squares solution for different orders of approximation it is found that the
minimum l1-norm solution is much superior as can be inferred from Table 1. The log of the error in the
minimum l1-norm solution is shown in Figure 2. In Figure 2, the eight distinct points on the error curves
correspond to the values of (M,N) given at the start of this paragraph. The minimum l1-norm solution
has less error when the higher order terms are projected on the space of lower degree polynomials by
using Lagrange interpolation, see Remark 2.1.
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3 Solving second order partial differential equations

The general form for a linear second order partial differential equation (SOPDE) is

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ a1

∂u

∂x
+ a2

∂u

∂y
+ a0u = f(x, y) (3.1)

where a, b, c, a1, a2, a0, and f are continuous functions of x and y. Since we are motivated by problems
involving SOPDEs arising in circular regions such as in a refracted wavefront through an optical system,
we shall consider a SOPDE that is invariant under rotations of the coordinate axes about the origin. We
have considered below a rotational invariant second order linear PDE with discontinuous BCs, and this
special type includes Poisson’s PDE appearing in physical systems. In addition to the above mentioned
motivation, this choice is also for the purpose of demonstration. However, it is important to emphasize
that the proposed method can be applied to PDEs that are not rotational invariant such as parabolic
and hyperbolic PDEs, and following the procedure described below one can set up an algebraic equation
as in (3.32) that will lead to the solution of the desired PDE. To demonstrate our method, we shall
consider

4u+ α

(
x
∂

∂x
+ y

∂

∂y

)2

u+ β

(
x
∂

∂x
+ y

∂

∂y

)
u+ γu = f. (3.2)

In polar coordinates r and φ, equation (3.2) becomes

(1 + αr2)
∂2u

∂r2
+

(
1

r
+ (α+ β)r

)
∂u

∂r
+

1

r2

∂2u

∂φ2
+ γu = f. (3.3)

The aim is to solve this SOPDE by integration operational matrix using Zernike polynomials in the
region 0 < r < r0 and 0 < φ < 2π with the given boundary conditions,

u(r0, φ) = g(φ),
∂u(r, φ)

∂r

∣∣∣∣
r=r0

= h(φ), u(r, φ0) = p(r),
∂u(r, φ)

∂φ

∣∣∣∣
φ=φ0

= q(r),

where any of the functions may have discontinuities. Multiplying both sides of (3.3) by r2 gives

r2(1 + αr2)
∂2u

∂r2
+ (r + αr3 + βr3)

∂u

∂r
+
∂2u

∂φ2
+ γr2u = r2f. (3.4)

Integrating twice with respect to r from r0 to r, the first, third and sixth terms in the left side of (3.4),
which do not contain the parameters α, β and γ, one gets∫ r

r0

∫ r

r0

r2 ∂
2u

∂r2
(dr)2 +

∫ r

r0

∫ r

r0

r
∂u

∂r
(dr)2 +

∫ r

r0

∫ r

r0

∂2u

∂φ2
(dr)2

= r2u(r, φ)− r2
0g(φ)− 3

∫ r

r0

ru(r, φ) dr −
∫ r

r0

r2
0h(φ) dr

+

∫ r

r0

r0g(φ) dr +

∫ r

r0

∫ r

r0

u(r, φ) (dr)2 +

∫ r

r0

∫ r

r0

∂2u

∂φ2
(dr)2.
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Again, integrating the above expression with respect to φ twice from φ0 to φ gives∫ φ

φ0

∫ φ

φ0

r2u(r, φ)(dφ)2 −
∫ φ

φ0

∫ φ

φ0

r2
0g(φ)(dφ)2 − 3

∫ φ

φ0

∫ φ

φ0

∫ r

r0

ru(r, φ) dr(dφ)2

−
∫ φ

φ0

∫ φ

φ0

∫ r

r0

r2
0h(φ) dr(dφ)2 +

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r0g(φ) dr(dφ)2

+

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

u(r, φ) (dr)2(dφ)2 +

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

∂2u

∂φ2
(dr)2(dφ)2. (3.5)

Expand the solution u(r, φ) of (3.2) in terms of Zernike polynomials up to some order (m,n) where
n ≥ m and n−m is even. This gives an approximation of u as ũ(r, φ) = ΦT (φ)U R(r), where Φ(φ) is a
matrix of size M × 1, R(r) is of size N × 1, M = 2m+ 1 and N is the number of radial polynomials of
degree less than or equal to n. Then each term of (3.5) has the following simplifications. The first term
in (3.5) can be written as §∫ φ

φ0

∫ φ

φ0

r2u(r, φ)(dφ)2 =

∫ φ

φ0

∫ φ

φ0

r2 (ΦT (φ)UR(r))(dφ)2 = ΦT (φ)ETDφφ0
UMr2

R R(r), (3.6)

where Mr2

R is the matrix representation of r2R(r) with respect to R(r), EDφφ0
is the IOM of double

integration of Φ(φ) and is EDφφ0
= E2

φφ0
, and EDφφ0

(1, 1) = 2π2/3. Using radial polynomials up to
order (3, 3),

r2R(r) =


r2

r3

2r4 − r2

r4

3r5 − 2r3

r5

 ≈


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −2
0 0 0 0 0 0




1
r

2r2 − 1
r2

3r3 − 2r
r3

 = Mr2

R R(r). (3.7)

As R(r) contains radial polynomials of maximum degree 3, the terms r4 and r5 are ignored in the above.
To obtain a better solution, we approximate r4 and r5 in terms of the set {1, r, r2, r3} by Lagrange
interpolation formula with equally spaced nodes (0, 1/3, 2/3, 1) in the interval 0 ≤ r ≤ 1 as,

r4 ≈ 2r3 − 11
9 r

2 + 2
9r, r5 ≈ 1

9 (25r3 − 20r2 + 4r), (3.8)

and incorporate them in the IOM representation whenever they are encountered. Then,

2r4 − r2 ≈ 4
9r −

31
9 r

2 + 4r3, 3r5 − 2r3 ≈ 4
3r −

26
3 r

2 + 25
3 r

3.

Consequently, in (3.7), we upgrade Mr2

R to

Mr2

R =


0 0 0 1 0 0
0 0 0 0 0 1
0 4

9 0 − 31
9 0 4

0 2
9 0 − 11

9 0 2
0 4

3 0 − 26
3 0 25

3
0 4

9 0 − 20
9 0 25

9

 .
§Strictly speaking, the resulting matrix representation is an approximation of some integral. However, we will always

use the equality sign to express that the operators on the right side of the equality stand for corresponding integrals on
the left side.
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If these higher order terms are completely ignored (instead of considering their projection), then this
approach of solving SOPDE using Zernike polynomials with IOM will fail.
The second term in (3.5) is

−
∫ φ

φ0

∫ φ

φ0

r2
0g(φ)(dφ)2 = −

∫ φ

φ0

∫ φ

φ0

ΦT (φ)gr2
0(dφ)2 = −ΦT (φ)ETDφφ0

gMT
r20
R(r),

where g(φ) = ΦT (φ)g, is the representation of u(r0, φ) = g(φ) in terms of trigonometric functions, and
g is an M × 1 vector. Mr20

is an N × 1 vector with first element r2
0 and others zero. Using Zernike

polynomials up to degree three:

r2
0 = [ r2

0 0 0 0 0 0 ]


1
r

2r2 − 1
r2

3r3 − 2r
r3

 = MT
r20
R(r).

The third term in (3.5) is

− 3

∫ φ

φ0

∫ φ

φ0

∫ r

r0

ru(r, φ) dr(dφ)2 = −ΦT (φ)ETDφφ0
U Errr0R(r), (3.9)

where Errr0 is the IOM of rR(r) in which powers of r higher than n are included after approximat-
ing in terms of lower powers of r, by the Lagrange interpolation formula with equally spaced nodes
(0, 1/3, 2/3, 1) in the interval 0 ≤ r ≤ 1, as mentioned earlier.
The fourth, fifth, and sixth terms in (3.5) are, respectively,

−
∫ φ

φ0

∫ φ

φ0

∫ r

r0

h(φ) r2
0 dr(dφ)2 = −ΦT (φ)ETDφφ0

hMT
r20
Err0R(r), (3.10)∫ φ

φ0

∫ φ

φ0

∫ r

r0

g(φ) r0 dr(dφ)2 = ΦT (φ)ETDφφ0
gMT

r0 Err0R(r), (3.11)∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

u(r, φ) (dr)2(dφ)2 = ΦT (φ)ETDφφ0
UEDrr0R(r). (3.12)

The seventh term in (3.5) is∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

∂2u

∂φ2
(dr)2 (dφ)2 =

∫ r

r0

∫ r

r0

[u(r, φ)− u(r, φ0)] (dr)2 −
∫ φ

φ0

∫ r

r0

∫ r

r0

q(r)(dr)2 dφ

= ΦT (φ)UEDrr0R(r)− ΦT (φ)e1p
TEDrr0R(r) (3.13)

−ΦT (φ)ETφφ0
e1q

TEDrr0R(r),

where e1 = [1 0 · · · 0]T is of size M × 1. Inserting the simplifications (3.6)-(3.13) in (3.5), gives

ΦT (φ)[ETDφφ0
UMr2

R − ETDφφ0
gMT

r20
− 3ETDφφ0

U Errr0 − E
T
Dφφ0

h(Mr20
)TErr0 + ETDφφ0

g(Mr0)TErr0

+ ETDφφ0
UEDrr0 + ImUEDrr0 − e1p

TEDrr0 − ETφφ0
e1q

TEDrr0 ]R(r). (3.14)
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Integrating with respect to r from r0 to r, the second, fourth, and fifth terms in (3.4), which contain the
parameters α and β, one gets∫ r

r0

(
αr4 ∂

2u(r, φ)

∂r2
+ (α+ β)r3 ∂u(r, φ)

∂r

)
dr

= αr4 ∂u(r, φ)

∂r
− αr4

0

∂u(r, φ)

∂r

∣∣∣∣
r=r0

+ (−3α+ β)

∫ r

r0

r3 ∂u(r, φ)

∂r
dr

= αr4 ∂u(r, φ)

∂r
− αr4

0 h(φ) + (−3α+ β)r3u(r, φ)

−(−3α+ β)r3
0u(r0, φ)− 3(−3α+ β)

∫ r

r0

r2u(r, φ) dr. (3.15)

Integrating again with respect to r from r0 to r gives∫ r

r0

(
αr4 ∂u(r, φ)

∂r
+ (3α− β)r3

0g(φ)− αr4
0 h(φ)− (3α− β)r3u(r, φ) + 3(3α− β)

∫ r

r0

r2u(r, φ)

)
dr.

(3.16)
The first and fourth terms in (3.16) together give∫ r

r0

(
αr4 ∂u(r, φ)

∂r
− (3α− β)r3u(r, φ))

)
dr

= αr4 u(r, φ)

∣∣∣∣r
r0

− 4α

∫ r

r0

r3 u(r, φ) dr − (3α− β)

∫ r

r0

r3u(r, φ) dr

= αr4 u(r, φ)− αr4
0 u(r0, φ)− (7α− β)

∫ r

r0

r3 u(r, φ) dr. (3.17)

Hence, (3.16) takes the form

αr4 u(r, φ)− αr4
0 g(φ)− (7α− β)

∫ r

r0

r3 u(r, φ) dr + (3α− β)r3
0

∫ r

r0

g(φ) dr

−α
∫ r

r0

r4
0 h(φ) dr + 3(3α− β)

∫ r

r0

∫ r

r0

r2u(r, φ) (dr)2. (3.18)

Again, integrating the above expression twice with respect to φ from φ0 to φ,

α

∫ φ

φ0

∫ φ

φ0

r4 u(r, φ) (dφ)2 − α
∫ φ

φ0

∫ φ

φ0

r4
0 g(φ) (dφ)2 − (7α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r3 u(r, φ) dr (dφ)2

+ (3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r3
0 g(φ) dr (dφ)2 − α

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r4
0 h(φ) dr (dφ)2

+ 3(3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

r2u(r, φ) (dr)2 (dφ)2. (3.19)

Write each term in (3.19) in terms of IOM noting that u(r, φ) = Φ(φ)T U R(r) and Mr4

R is the matrix
representation of r4R(r) with respect to R(r). The first term in (3.19) is

α

∫ φ

φ0

∫ φ

φ0

r4 u(r, φ) (dφ)2 = α

∫ φ

φ0

∫ φ

φ0

ΦT (φ)UMr4

R R(r) (dφ)2 = αΦT (φ)ETDφφ0
UMr4

R R(r). (3.20)
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The second term in (3.19) is

−α
∫ φ

φ0

∫ φ

φ0

r4
0 g(φ) (dφ)2 = −α

∫ φ

φ0

∫ φ

φ0

ΦT (φ)gM
r40
R R(r) (dφ)2 = −αΦT (φ)ETDφφ0

gMT
r40
R(r). (3.21)

The third term in (3.19) is

−(7α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r3 u(r, φ) dr (dφ)2 = −(7α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

ΦT (φ)U(r3R(r)) dr (dφ)2

= −(7α− β)ΦT (φ)ETDφφ0
UEr

3

rr0R(r). (3.22)

The fourth term in (3.19) is

(3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

r3
0 g(φ) dr (dφ)2 = (3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

ΦT (φ)gMr30
R(r) dr (dφ)2

= (3α− β)ΦT (φ)ETDφφ0
gMr30

Err0R(r). (3.23)

The fifth term in (3.19) is

−α
∫ φ

φ0

∫ φ

φ0

∫ r

r0

r4
0 h(φ) dr (dφ)2 = −α

∫ φ

φ0

∫ φ

φ0

∫ r

r0

ΦT (φ)hMr40
R(r) dr (dφ)2

= −αΦT (φ)ETDφφ0
hMr40

Err0R(r). (3.24)

The sixth term in (3.19) is

3(3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

r2u(r, φ) (dr)2 (dφ)2 = 3(3α− β)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

ΦT (φ)U r2R(r) (dr)2 (dφ)2

= 3(3α− β)ΦT (φ)ETDφφ0
UEr

2

Drr0R(r). (3.25)

Combining the terms (3.20)-(3.25), the term (3.19) takes the form, in terms of IOMs,

ΦT (φ)[αETDφφ0
UMr4

R − αETDφφ0
gMT

r40
− (7α− β)ETDφφ0

UEr
3

rr0 + (3α− β)ETDφφ0
gMr30

Err0

− αETDφφ0
hMr40

Err0 + (3α− β)(φ)ETDφφ0
UEr

2

Drr0 ]R(r). (3.26)

The last two terms in (3.4) in terms of integration operational matrices after integrating twice with
respect to φ from φ0 to φ and again twice with respect to r from r0 to r, are

γ

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

r2u(r, φ) (dr)2 (dφ)2 = γ

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

ΦT (φ)U(r2R(r)) (dr)2 (dφ)2

= γΦT (φ)ETDφφ0
UEr

2

Drr0R(r), (3.27)

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

r2f(r, φ) (dr)2 (dφ)2 =

∫ φ

φ0

∫ φ

φ0

∫ r

r0

∫ r

r0

ΦT (φ)F (r2R(r)) (dr)2 (dφ)2

= ΦT (φ)ETDφφ0
FEr

2

Drr0R(r). (3.28)
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Combining the terms (3.14), (3.26), (3.27), and (3.28), the equation (3.3) finally takes the form

ΦT (φ)[ETDφφ0
UMr2

R − ETDφφ0
gMT

r20
− 3ETDφφ0

U Errr0 − E
T
Dφφ0

h(Mr20
)TErr0

+ ETDφφ0
g(Mr0)TErr0 + ETDφφ0

UEDrr0 + ImUEDrr0 − e1p
TEDrr0 − ETφφ0

e1q
TEDrr0 + αETDφφ0

UMr4

R

− αETDφφ0
gMT

r40
− (7α− β)ETDφφ0

UEr
3

rr0 + (3α− β)ETDφφ0
gMr30

Err0 − αETDφφ0
hMr40

Err0

+ (3α− β)ETDφφ0
UEr

2

Drr0 + γETDφφ0
UEr

2

Drr0 ]R(r) = ΦT (φ)[ETDφφ0
FEr

2

Drr0 ]R(r). (3.29)

Based on (3.29), define matrices A and Y as,

A = (Mr2

R )T ⊗ ETDφφ0
− 3(Errr0)T ⊗ ETDφφ0

+ (EDrr0)T ⊗ ETDφφ0
+ (EDrr0)T ⊗ Im + α(Mr4

R )T ⊗ ETDφφ0

−(7α− β)(Er
3

rr0)T ⊗ ETDφφ0
+ (3α− β)(Er

2

Drr0)T ⊗ ETDφφ0
+ γ(Er

2

Drr0)TETDφφ0
, (3.30)

Y = ETDφφ0
FEr

2

Drr0 + ETDφφ0
gMT

r20
+ ETDφφ0

h(Mr20
)TErr0 − ETDφφ0

g(Mr0)TErr0 + e1p
TEDrr0

+ETφφ0
e1q

TEDrr0 + αETDφφ0
gMT

r40
− (3α− β)ETDφφ0

gMr30
Err0 + αETDφφ0

hMr40
Err0 . (3.31)

For Y given in (3.31), define the vector b = vec(Y ). Let x = vec(U) be the vector that is unknown.
Using the matrix A in (3.30), (3.29) can be written as

Ax = b. (3.32)

Therefore, the solution of the PDE in (3.2) can be found by solving a system of linear equations given by
(3.32) in which A is a sparse matrix of order MN. The solution x, an MN × 1 matrix, is then reshaped
as an M ×N matrix U which gives ũ(r, φ) = ΦT (φ)UR(r), an approximate solution of (3.2).

For the Laplace equation, α = β = γ = 0, and also F = 0. In this case (3.30) and (3.31) simplify to,
respectively,

A = (Mr2

R )T ⊗ ETDφφ0
− 3(Errr0)T ⊗ ETDφφ0

+ (EDrr0)T ⊗ ETDφφ0
+ (EDrr0)T ⊗ Im, (3.33)

Y = ETDφφ0
gMT

r20
+ ETDφφ0

h(Mr20
)TErr0 − ETDφφ0

g(Mr0)TErr0 + e1p
TEDrr0 + ETφφ0

e1q
TEDrr0 . (3.34)

To demonstrate the accuracy of this method, in Example 3.1 below, the corresponding linear equation
obtained in (3.32) is solved in two ways . In one the standard matrix pseudo-inverse of A is used, in
which case x = A†b, and in the other an l1-optimization algorithm is used. Both have been implemented
using Matlab.

Example 3.1 (Numerical Solution of a Second Order PDE). Consider the second order PDE,

r2 ∂
2u

∂r2
+ r

∂u

∂r
+
∂2u

∂φ2
= 0, (3.35)
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Table 2: Density of the sparse matrix A

Order of Zernike pol. Order of A Non-zero elements in A Sparsity of A
M ×N MN ×MN x x/M2N2

7× 6 42× 42 502 0.2846
9× 9 81× 81 1275 0.1943

11× 12 132× 132 2680 0.1538
13× 16 208× 208 5102 0.1179
15× 20 300× 300 8745 0.0972
17× 25 425× 425 14306 0.0792
19× 30 570× 570 22009 0.0677
21× 36 756× 756 33048 0.0578

in a circular region of radius a subject to the boundary conditions (BCs)

g(φ) := u(r0, φ) =

{
V0, 0 < φ < π;
0, π < φ < 2π;

h(φ) =
∂u(r, φ)

∂r

∣∣∣∣
r=a

=
V0

πa sinφ
;

p(r) = u(r, φ0) = V0

{
1

2
+

1

π
tan−1 2ar sinφ0

(a2 − r2)

}
;

q(r) =
∂u(r, φ)

∂φ

∣∣∣∣
φ=φ0

=
V0

π

2ar cosφ0(a2 − r2)

(a2 − r2)2 + 4a2r2 sin2 φ0

.

This is a Laplace equation in polar coordinates and appears in determining the potential distribution in
a horizontal cylindrical region with axial symmetry when the upper half is maintained at a potential V0

and the lower half at zero potential. Without any loss of generality, assume that V0 = 1, r0 = a = 1,
and φ0 = 0. So, the BCs in terms of the Zernike polynomials are,

g(φ) = u(r0, φ) =
1

2
+

2

π

∞∑
i=0

sin(2i+ 1)φ

(2i+ 1)
= gTΦ(φ),

h(φ) =
∂u(r, φ)

∂r

∣∣∣∣
r=r0

=
2

π

∞∑
i=0

sin(2i+ 1)φ = hTΦ(φ),

p(r) = u(r, φ0) = 1
2 = pTR(r),

q(r) =
∂u(r, φ)

∂φ

∣∣∣∣
φ=φ0

=
2r

π(1− r2)
= qTR(r),

where p = [1
2 0 0 0 0 0 · · · ]T , q = 2

π [0 1 0 0 0 1 · · · ]T , g = 2
π [π/4 0 1 0 0 0 1/3 · · · ]T , and h =

2
π [0 0 1 0 0 0 1 · · · ]T . With the above BCs, the solution of the Laplace equation (3.35) is obtained
numerically using (3.33) and (3.34) for values (7,6), (9,9), (11,12), (13,16), (15,20), (17,25), (19,30) and
(21,36) of the pair (M,N). The Zernike polynomial based solution is compared with the exact solution
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Table 3: Errors in solving SOPDE

Order of Zernike pol. 7 × 6 9 × 9 11 × 12 13 × 16 15 × 20 17 × 25 19 × 30 21 × 36

`2-error (order 10−4) 17.1369 15.9970 11.6488 7.3285 4.5292 7.4972 5.0259 8.3604

`1-error (order 10−4) 14.9311 14.9311 7.3285 7.3285 4.4431 4.4431 3.0503 3.0499

and the errors are listed in Table 3 for l1 as well as l2 methods, the l1-errors being much lower. It appears
from Figure 5 that the error decreases exponentially with the increase of ZRP degrees. The solution
surfaces and their contour lines for only three values (7,6), (15,20), and (21,36) of (M,N) are shown in
Figures 3-4 for the Zernike polynomial based solutions, along with the solution by the product method,
and the exact Poisson integral solution from where one can compare the different solutions. The eight
distinct points on the error curve in Figure 5 correspond to the values of (M,N) as mentioned above.
It appears that among the approximate solutions, the l1 method is better, and the accuracy improves
with higher order terms. The proposed method compares favorably with the exact solution particularly
if (M,N) = (21, 36). To justify the use of an l1-algorithm for sparse solutions, the sparsity, i.e. the
density of the sparse matrix A defined as the number of non-zero elements in A is computed, and these
densities corresponding to the order of the Zernike polynomials used are shown in Table 2. We reiterate
that if the higher order terms are not approximated by projecting on the space spanned by the lower
order terms, the solution in this second order case is nowhere near the true solution.

Computational complexity Recall that n denotes the maximum degree of radial polynomials used.
To compute the Zernike coefficients of the forcing function f, the cost of computation is O(n3), see [4].
In (2.12) and (3.29), the number of operations mainly comes from calculating the tensor product which
is O(n4). However, it is important to note that the matrices obtained from the tensor products in (2.12)
or after (3.29) have to be computed just once and thereafter the same matrices can be used to solve
different problems with other boundary conditions. The linear system Ax = b, where A is a sparse
matrix, can be efficiently solved using an l1-minimization algorithm.

4 Rate of decay of Zernike coefficients

Recall from Section 1 that the coefficients in a Zernike expansion as given in (1.6) are

Anm =
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

f(r, φ) cosmφRmn (r)rdφdr,

Bnm =
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

f(r, φ) sinmφRmn (r)rdφdr.

The rate of decay of the Amns and Bmns will be calculated here for certain types of functions. These
are given in Theorem 4.1 and Theorem 4.3 below.

Define the inner product on the unit disk as

〈f, g〉 =

∫ 1

0

∫ 2π

0

f(r, φ)g(r, φ) r dr dφ.
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Figure 3: SOPDE Solution: Solution surface and contour lines.
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Figure 4: SOPDE Solution: Solution surface and contour lines.
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The associated norm is

‖f‖ =

√∫ 1

0

∫ 2π

0

|f(r, φ)|2 r dr dφ .

Define {
oUmn
eUmn

}
:=

{
Rmn (r)

sinmφ
cosmφ

}
.

As given in [20] and [3] ∫ 1

0

Rmn (r)Rmn′ =
δnn′

2n+ 2

which means

‖Rmn ‖2 =
1

2n+ 2
.

As discussed in [20, 3], the set

{
oUmn
eUmn

}
forms an orthogonal basis for the space of square integrable

functions in the unit disk. Since
∫ 2π

0
dφ = 2π,

∫ 2π

0
sin2mφ dφ = π, and

∫ 2π

0
cos2mφ dφ = π, one can

normalize to get the following orthonormal basis for the space of square integrable functions in the unit
disk

B :=

{√
2n+ 2√
π

Rmn (r)
sinmφ
cosmφ

}
n=0,1,2,...
1≤m≤n
n−m even

⋃{√
2n+ 2√

2π
R0
n(r)

}
n=0,2,4,...

which can be rewritten more compactly as

B :=

√
εm(n+ 1)√

π
Rmn (r)

{
sinmφ
cosmφ

}
=:

{
oUm

n
eUm

n

}
n=0,1,2,...
0≤m≤n
n−m even

.

Any f(r, φ) defined on the unit disk can be expanded as

f(r, φ) =

∞∑
n=0

∑
0≤m≤n
n−m even

[〈f(r, φ),e Um
n 〉eU

m
n + 〈f(r, φ),o Um

n 〉oU
m
n ] . (4.1)
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On comparing (4.1) with (1.6) and (1.7), note that

Anm = 〈f(r, φ),e Um
n 〉, Bnm = 〈f(r, φ),o Um

n 〉

are the coefficients of f with respect to the Zernike polynomial basis. They will be referred to as the
Zernike coefficients of f. Define the Nth partial sum as

SNf(r, φ) :=

N∑
n=0

∑
0≤m≤n
n−m even

[〈f(r, φ),e Um
n 〉eU

m
n + 〈f(r, φ),o Um

n 〉oU
m
n ] .

Let PN be the space spanned by Zernike polynomials of radial degree at most N, i.e.,

PN =

p(r, φ) : p(r, φ) =

N∑
n=0

∑
0≤m≤n
n−m even

[ecmn
eUm

n +o cmn
oUm

n ]

 .

Then SNf is a polynomial in PN . Since B forms an orthonormal basis, by property of orthonormal sets,
SNf is the polynomial of best approximation to f among all polynomials in PN which means that for
any polynomial p ∈ PN one has

‖f − p‖ ≥ ‖f − SNf‖

with equality holding if and only of p = SNf. By virtue of B being an orthonormal basis, Parseval’s
Identity also holds

‖f‖2 =

∞∑
n=0

∑
0≤m≤n
n−m even

(
|〈f(r, φ),e Um

n 〉|
2

+ |〈f(r, φ),o Um
n 〉|

2
)

which in turn gives the Riemann-Lebesgue Lemma in this case:

lim
m,n→∞

|〈f(r, φ),e Um
n 〉| = lim

m,n→∞
|〈f(r, φ),o Um

n 〉| = 0. (4.2)

In certain cases, the rate of decay of the coefficients in (4.2) can be obtained as follows.
Denote by Ck(B(0, 1)) the space of functions defined on the unit disk B(0, 1) whose kth order partial

derivatives all exist and are continuous on B(0, 1). For convenience, we shall sometimes write Ck.
Suppose that u(r, φ) ∈ C2. Then

Cnm =
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

u(r, φ)eimφRmn (r)r dφdr

=
εm(n+ 1)

π

∫ 1

0

[
u(r, φ)eimφ

im

∣∣∣2π
0
− 1

im

∫ 2π

0

∂u(r, φ)

∂φ
eimφdφ

]
Rmn (r)r dr

= − 1

im

εm(n+ 1)

π

∫ 1

0

∫ 2π

0

∂u(r, φ)

∂φ
eimφRmn (r)r dφdr (since u(r, 2π) = u(r, 0))

= − 1

im

εm(n+ 1)

π

(
− 1

im

)∫ 1

0

∫ 2π

0

∂2u(r, φ)

∂φ2
eimφRmn (r)r dφdr (4.3)
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where in the last step we have used the fact that ∂u
∂φ (r, 0) = ∂u

∂φ (r, 2π). The integral on the right side of

(4.3) will yield the Zernike coefficients of ∂2u(r,φ)
∂φ2 . Denoting this by C

′′

mn, one can write

Cmn =
εm(n+ 1)

π

(
− 1

im

)2

C
′′

mn

which decays at the rate of m−2. Note that m and n tend to infinity at the same rate. In general, one
has the following Theorem 4.1.

Theorem 4.1. Let u(r, φ) ∈ Ck. Then the Zernike coefficients Anm, Bnm of u decay at the rate of m−k.

Definition 4.2. A function u : U → R is said to be Hölder continuous of order λ if for all x, y ∈ U

|u(x)− u(y)| ≤ C‖x− y‖λ

for some constants λ and C, where ‖.‖ is the metric on U.

Theorem 4.3. Let u(r, φ) be Hölder continuous of order λ ≥ 1. Then the Zernike coefficients Anm,
Bnm of u decay at least like m−λ+1.

Proof. Consider

Cnm :=
εm(n+ 1)

π

∫ 1

0

∫ 2π

0

u(r, φ)eimφRmn (r)(r)r dφ dr. (4.4)

Rewriting (4.4) gives

Cnm = −εm(n+ 1)

π

∫ 1

0

∫ 2π

0

u(r, φ)eimφeiπRmn (r)r dφ dr

= −εm(n+ 1)

π

∫ 1

0

∫ 2π

0

u(r, φ)eim(φ+π/m)Rmn (r)r dφ dr

= −εm(n+ 1)

π

∫ 1

0

∫ 2π+π/m

π/m

u(r, α− π/m)eimαRmn (r)r dα dr

= −εm(n+ 1)

π

∫ 1

0

∫ 2π

0

u(r, α− π/m)eimαRmn (r)r dα dr. (4.5)

Adding (4.4) and (4.5) gives

Cnm =
εm(n+ 1)

2π

∫ 1

0

∫ 2π

0

[u(r, φ)− u(r, φ− π/m)] eimφRmn (r)r dφdr

or, |Cnm| ≤
εm(n+ 1)

2π

∫ 1

0

∫ 2π

0

|u(r, φ)− u(r, φ− π/m)| |Rmn (r)r| dφ dr

≤ C
εm(n+ 1)

2π

( π
m

)λ ∫ 1

0

∫ 2π

0

|Rmn (r)r| dφ dr

= Cεm(n+ 1)
( π
m

)λ ∫ 1

0

|Rmn (r)r| dr

≤ Cεm(n+ 1)
( π
m

)λ
,
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where the last inequality follows from the fact that |Rmn (r)r| ≤ 1, since |Rmn (r)| ≤ 1 and 0 ≤ r ≤ 1, see
[22]. Looking at the real and imaginary parts of Cnm gives the desired result. Note that m and n tend
to infinity at the same rate.

5 Appendix

To derive the IOM for the radial parts of Zernike polynomials, the recurrence relation stated in (2.9)
will be used. For convenience, this is again provided below.∫ r

r0

[
Rmn (r) +Rm+2

n (r)
]
dr =

1

n+ 1

[
Rm+1
n+1 (r)−Rm+1

n−1 (r)
] ∣∣∣r
r0
. (5.1)

If all radial polynomials up to degree n are used then the basis vector for the radial parts of Zernike
polynomials is

R(r) = [R0
0(r), R1

1(r), R0
2(r), R2

2(r), R1
3(r), R3

3(r), . . . , Rmn (r)], n ∈ N∪{0}, 0 ≤ n−m, n−m even. (5.2)

Let i be the degree of a radial polynomial, and let pi denote the total number of polynomials of degree
i. Due to the special structure of the radial polynomials as described in (1.4) of Section 1, the value of
pi is determined as follows. For a given non-negative integer i, the value of pi is the number of integers
j for which i− j is even and non negative. For i = 0, 1, . . . , n, let ∆i+1 be the pi × pi matrix with ones
along the diagonal and also above the main diagonal, and zeros elsewhere. That is,

∆i+1 =


1 1 0 · · · 0
0 1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 1
0 0 · · · 0 1


pi×pi

whose inverse is

∆−1
i+1 =


1 −1 · · · (−1)pi−1

0 1 −1 · · · (−1)pi−2

...
...

. . .
. . .

...
0 0 · · · 1 −1
0 0 · · · 0 1


pi×pi

Let Er1 be a block diagonal matrix of the form

Er1 =


∆1

∆2

. . .
∆n+1

 .
Denote

∫ r
r0
R(r) dr by Err0 . Then from (5.1) one can write

Er1Err0 = Er2.

The structure of the matrix Er1 has been described above. The matrix Er2 is a block matrix of order
n+ 1, n being the degree of Rmn (r). Each block in Er2 is a submatrix Γkl and can be represented as

Er2 = [Γkl]
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where Γi+1,j+1 is of size pi × pj . For example, let n = 5. Then Er2 is a 6× 6 block matrix where all the
blocks are null matrices except for the following:

Γ11 = [−R1
1(r0)], Γ12 = [1], Γ21 = [−1

2
R2

2(r0)], Γ23 =
[
0 1

2

]
,Γ31 =

[
− 1

3 [R1
3(r0)−R1

1(r0)]
− 1

3R
3
3(r0)

]
, Γ32 =

[
− 1

3
0

]
,

Γ34 =

[
1
3 0
0 1

3

]
,Γ41 =

[
− 1

4 [R2
4(r0)−R2

2(r0)]
− 1

4R
4
4(r0)

]
,Γ43 =

[
0 − 1

4
0 0

]
,Γ45 =

[
0 1

4 0
0 0 1

4

]
,

Γ51 =

− 1
5 [R1

5(r0)−R1
3(r0)]

− 1
5 [R3

5(r0)−R3
3(r0)]

− 1
5R

5
5(r0)

 ,Γ54 =

− 1
5 0

0 − 1
5

0 0

 ,Γ56 =

 1
5 0 0
0 1

5 0
0 0 1

5

 ,
Γ61 =

− 1
6 [R2

6(r0)−R2
4(r0)]

− 1
6 [R4

6(r0)−R4
4(r0)]

− 1
6R

6
6(r0)

 ,Γ65 =

0 − 1
6 0

0 0 − 1
6

0 0 0

 .
For 0 ≤ m ≤ n, if one wants to form the integration operational matrix of

∫ r
r0
Rmn (r) dr from (5.1) using

only radial polynomials up to degree n, then usually the terms of higher degree are neglected. When n
is odd, then for the integrals∫ r
r0
Rnn(r) dr,

∫ r
r0
Rn−2
n (r) dr, . . . ,

∫ r
r0
R1
n(r) dr,

the terms
1

n+1R
n+1
n+1(r), 1

n+1 [Rn−1
n+1(r)−Rn+1

n+1(r)], . . . , 1
n+1 [R2

n+1(r)−R4
n+1(r) + · · ·+ (−1)

n−1
2 Rn+1

n+1]
are neglected, respectively. On the other hand, when n is even, then for the integrals∫ r
r0
Rnn(r) dr,

∫ r
r0
Rn−2
n (r) dr, . . . ,

∫ r
r0
R0
n(r) dr,

the terms,
1

n+1R
n+1
n+1(r), 1

n+1 [Rn−1
n+1(r)−Rn+1

n+1(r)], . . . , 1
n+1 [R0

n+1(r)−R2
n+1(r) + · · ·+ (−1)

n
2Rn+1

n+1]
are neglected, respectively. In compact form, when one wishes to use only radial polynomials up to
degree n to evaluate ∫ r

r0

Rn−2i
n (r) dr,

then one neglects
1

n+ 1

[
Rn−2i+1
n+1 −Rn−2i+3

n+1 + · · ·+ (−1)iRn+1
n+1(r)

]
, d

where

i =

{
0, 1, . . . , n−1

2 when n is odd,
0, 1, . . . , n2 when n is even.

For better accuracy of results, these neglected terms of degree greater than n can then be represented
in terms of the radial polynomials appearing in R(r) of (5.2) as mentioned in Remark 2.1.

6 Conclusion

It is established in this paper that numerical solutions of partial differential equations in circular re-
gions can be successfully done using Zernike polynomials and IOMs which can otherwise be challenging
using other orthogonal polynomials. In comparison, using multidimensional block pulse functions and
OSOMRI (one shot operational matrix for repeated integrations), with extensive computations, it was
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found earlier in [23] that solutions of second order PDEs do not promise numerical stability in all cases.
In solving the second order PDE by Zernike polynomials of a particular order (m,n), if the terms of
order higher than n are neglected in deriving operational matrices, the obtained solution is far from the
actual one. By including these higher order terms as projections on the space generated by the lower
order terms (see (3.8)), the solution of the second order PDE is comparable with the true solution, and
accuracy in the first order case is vastly improved.

In solving PDEs using IOM and block pulse functions, simple recursive methods could be developed in
[23] due to the disjoint nature of the block pulse functions. Unfortunately, this cannot be done with other
orthogonal polynomials extensively used in [10] including the ones used here. The integration operational
matrices for double integration, EDrr0 and EDφφ0

, are computed as E2
rr0 and E2

φφ0
respectively, however,

this leads to an accumulation of errors at each stage of the integration process. This can be improved
by developing the IOM in the final stage known as OSOMRI as developed in [23]. However, the effort
does not seem worthwhile because the improvement occurs in the higher order of decimal places and in
many practical cases the solution without OSOMRI may serve the purpose. Another thing to note is
that the second order PDEs solved here have boundary conditions that are discontinuous at two points
on the circle. Due to these discontinuities, the solution shows oscillations known as Gibbs-Wilbraham
phenomenon as is evident from the discontinuity of the contour lines of IOM solutions in contrast with
those of the exact analytical solution in Figure 4. In Example 3.1, a Laplace equation is solved with
discontinuous Dirichlet and Neumann BCs, and as these discontinuous functions cannot be defined at
some of the Chebyshev or Gauss-Lobatto points, the much acclaimed pseudo-spectral methods are not
directly applicable to such problems. For the purpose of demonstration of our method, examples selected
are simple in nature.

Our prime objective is to highlight how Zernike polynomials can be directly applied to solve PDEs
with discontinuous boundary conditions. There are other methods to numerically solve PDEs as outlined
in Section 1 and depending on the context and situation of the physical problems one may select an
appropriate method for which the proposed approach is offered here as a potential candidate.

An extremely important problem for future investigation is the parameter estimation of distributed
parameter systems that is a challenging research area for control system engineers. In this regard,
another promising area of future research is to use Zernike polynomials in rectangular coordinates to
solve PDEs with rectangular boundaries and conversely to estimate the parameters in such regions if
the input and the response are known.
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