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Sampling of homogeneous polynomials and
approximating multivariate functions

Somantika Datta, Stephen Howard and Douglas Cochran

Abstract. Conditions for reconstruction of multivariate homogeneous polynomials from
sets of sample values are introduced. In addition, it is shown that one can explicitly ob-
tain the polynomial coefficients from the sample data by considering frames for spaces of
symmetric tensors. Further, it is discussed how the reconstruction of homogeneous poly-
nomials can be used to approximate certain smooth functions.
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1 Introduction

1.1 Motivation

Several authors have noted the importance of interpolation and reconstruction of
multivariate polynomials from sample data in applications. Zakhor [13], for ex-
ample, considered the problem of interpolation of bivariate polynomials from ir-
regularly spaced sample values in connection with two-dimensional filter design
and image processing. The case of multivariate polynomials presents significant
difficulties not encountered with polynomials of one variable, in particular due to
the zeros of these entire functions of several variables not being isolated as occurs
in the univariate setting. Consequently, it is not surprising that, in her work, Za-
khor [13] develops conditions in which suitable sampling sets are constrained to
lie on certain algebraic curves.

More recent work by Varjú [12] and Benko and Króo [1] develops Weierstraß
types of results for approximation of smooth multivariate functions by homoge-
neous polynomials. This suggests the potential utility of interpolation and recon-
struction of homogeneous polynomials from sample values. It is well known that
the linear space Hk.Cn/ of homogeneous polynomials of degree k in n complex
variables is isomorphic to the space Symk.Cn/ of symmetric k-tensors over Cn.
This fact was used by the authors in [4] to develop results concerning frames and
Grammians on Symk.Cn/. In this paper, a similar perspective is used to derive
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422 S. Datta, S. D. Howard and D. Cochran

conditions under which coefficients of a multivariate homogeneous polynomial
of known degree can be reconstructed explicitly from sets of sample values. Fur-
ther, it is noted that, modulo general position issues, the number of samples is the
crucial issue in determining suitability of a sampling set. Nevertheless, some sam-
pling sets are “better” than others in that they provide snugger frames and hence
the numerical advantages they entail. The relative merits of sampling sets in this
respect do not depend on the particular polynomial to be reconstructed, thus allow-
ing generically good sampling sets to be designed before any sampling is actually
carried out.

1.2 Outline

The paper is divided as follows. In Section 2 it is shown that one can reconstruct
the coefficients of a degree-k homogeneous polynomial from its samples at points
which form a frame for the space Symk.Cn/. This is stated in Theorem 2.1. Theo-
rem 2.3 of Section 2 shows that a sampling set that suffices for n-variate homoge-
nous polynomials of degree k is also suitable for reconstructing the coefficients of
any homogeneous polynomial in n variables of degree 1 6 ` < k. The converse
is “almost always” true provided that the size of the sampling set is big enough.
Section 3 gives several examples to demonstrate these ideas. Section 4 proposes
a way of using this reconstruction of homogeneous polynomials to approximate
certain smooth functions from given samples.

1.3 Notation

Before beginning the mathematical sections of the paper, a few comments on
notation and terminology are needed. For two vectors x D Œx.1/; : : : ; x.n/�T and
y D Œy.1/; : : : ; y.n/�T in Cn, their inner product will be denoted by

hx; yi D

nX
jD1

x.j /y.j /

where the bar denotes complex conjugate, i.e., the inner product is conjugate linear
in its first argument and linear in its second argument. The corresponding conven-
tion will be used for inner products in other complex Hilbert spaces. Let H be a
Hilbert space and let X D ¹xk W k 2Kº, where K is some index set, be a collec-
tion of vectors in H . Then X is said to be a frame for H if there exist constants A
and B , 0 < A � B <1, such that for any f 2 H

Akf k2 �
X
k2K

jhxk; f ij
2
� Bkf k2:
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Sampling homogeneous polynomials 423

The constantsA andB are called the frame bounds,A being the lower frame bound
and B the upper frame bound. If A D B , the frame is called a tight frame. For a fi-
nite dimensional Hilbert space, a finite spanning set is equivalent to a frame. Given
a finite frame X D ¹x1; : : : ; xmº for an n-dimensional complex vector space V ,
the function F W V ! `2.¹1; : : : ; mº/ D Cm given by

F.w/ D Œhx1; wi ; : : : ; hxm; wi�
T

will be called the Bessel map associated with X , while F D F �F W V ! V (i.e.,
the composition of the adjoint of F with F ) will be called the frame operator asso-
ciated withX . The Gram matrix or the Grammian ofX isGX D FF �. The Gram-
mian and the frame operator have the same non-zero eigenvalues. The minimum
and the maximum eigenvalues give the optimal lower and upper frame bounds,
respectively [3]. Every v 2 V can be represented as [3]

v D

mX
iD1

hF �1xi ; vixi D

mX
iD1

hxi ; viF
�1xi : (1.1)

The sequence ¹F �1xiºmiD1 is also a frame and is called the canonical dual of X .
Besides, if A and B are the optimal lower and upper frame bounds for X , then the
operator norm kF �1k is bounded above by 1

A
.

The k-fold tensor product V ˝k of an n-dimensional vector space V is a vector
space spanned by elements of the form v1 ˝ � � � ˝ vk where each vi 2 V (see
[6, 11]). The vector v1 ˝ � � � ˝ vk is called a tensor and has nk coordinates

.v
.`1/
1 ; v

.`2/
2 ; : : : ; v

.`k/

k
/;

where `i D 1; 2; : : : ; n, i D 1; 2; : : : ; k, and v.`/i denotes the `th coordinate of the
vector vi . A choice of basis ¹e1; : : : ; enº for V gives rise to a basis for V ˝k con-
sisting of the nk product elements ei1:::ik � ei1 ˝ � � � ˝ eik , 1 � i1; : : : ; ik � n.
In particular, V ˝k has dimension nk .

The space of symmetric k-tensors associated with V , denoted by Symk.V /, is
the subspace of V ˝k consisting of those tensors which remain fixed under permu-
tation. Specifically, denote by Sk the symmetric group on k symbols and define an
action of Sk on V ˝k by

A� .v1 ˝ � � � ˝ vk/ D v��1.1/ ˝ � � � ˝ v��1.k/:

Then Symk.V / consists of all elements of V ˝k such that

A� .v1 ˝ � � � ˝ vk/ D v1 ˝ � � � ˝ vk for all � 2 Sk

(see [11, Chapter 10]). The symmetrizer of a tensor is an average of all the permu-
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tations. For ¹v1; : : : ; vkº, the symmetrizer of v1 ˝ � � � ˝ vk is given by

1

kŠ

X
�2Sk

A� .v1 ˝ � � � ˝ vk/: (1.2)

The symmetrizer gives the same symmetric tensor for all tensors involving the
same set of vectors. The space Symk.V / is spanned by the tensor powers v˝k

where v 2 V . If V has dimension n, then

dim Symk.V / D

 
nC k � 1

k

!
:

One should note that the tensor v1 ˝ � � � ˝ vk and its symmetrizer created by (1.2)
both lie in V ˝k that has dimension

nk >

 
nC k � 1

k

!
:

One can thus identify the like coordinates in the symmetrizer to get a vector with�
nCk�1
k

�
coordinates. This is denoted by v1 ˇ � � � ˇ vk . For example, if

v1 D

 
a

b

!
and v2 D

 
c

d

!

are two vectors in C2, then the symmetrizer is given by

1

2
.v1 ˝ v2 C v2 ˝ v1/ D

0BBBB@
ac

1
2
.bc C ad/
1
2
.bc C ad/

bd

1CCCCA
which is a vector in C2˝2. Identifying the second and the third component of this
symmetrizer gives the vector

v1 ˇ v2 D

0B@ ac

bc C ad

bd

1CA
and this has three coordinates which is the same as the dimension of Sym2.C2/.
Symk.V / has a natural inner product with the property˝

v˝k; w˝k
˛
Symk.V / D hv;wi

k
V : (1.3)
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Sampling homogeneous polynomials 425

2 Sampling of homogeneous polynomials

It is well known (see, e.g., [11]) that Hk.Cn/, the linear space of homogeneous
polynomials of total degree k in variables Nz.1/; : : : ; Nz.n/ is isomorphic to Symk.V /.
This section points out a connection between the condition that

X .k/ D ¹x˝k1 ; : : : ; x˝km º

is a frame for Symk.V / and the reconstructability of polynomials inHk.Cn/ from
the values they take at sets of m points in Cn.

Beginning with k D 1, let w 2 V D Sym1.V / and denote by

Œw.1/; : : : ; w.n/�T 2 Cn

the coordinates of w in some orthonormal basis for V . There is an obvious iso-
morphism that takes w 2 V to the polynomial pw 2 H1.Cn/ defined by

pw.z
.1/; : : : ; z.n// D w.1/ Nz.1/ C � � � C w.n/ Nz.n/:

If X D ¹x1; : : : ; xmº is a frame for V , the associated Bessel map F W V ! Cm is
given by

F.w/ D

2664
hx1; wi
:::

hxm; wi

3775 D
2664
pw.x

.1/
1 ; : : : ; x

.n/
1 /

:::

pw.x
.1/
m ; : : : ; x

.n/
m /

3775 : (2.1)

In other words, F.w/ is a vector of values obtained by evaluating (i.e., “sampling”)
pw at the points x1; : : : ; xm. One may ask whether this set of m sample values is
sufficient to uniquely determine pw .

To address this question, define a sampling function PX W H1 ! Cm by

PX .p/ D

2664
p.x

.1/
1 ; : : : ; x

.n/
1 /

:::

p.x
.1/
m ; : : : ; x

.n/
m /

3775
and note that (2.1) shows the Bessel map is given by F.w/ D PX .pw/. Because F
is invertible, w is uniquely determined by F.w/. Hence any pw 2 H1 is uniquely
determined by its samples PX .pw/.

Conversely, ifX fails to be a frame for V , the mapping F defined by (2.1) is still
well-defined, but has non-trivial kernelK. In this case, PX .pw/ D PX .pwCu/ for
all u 2 K. So, in particular, pw is not uniquely determined from its samples at
x1; : : : ; xm.
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A similar situation occurs for k > 1, where the space of interest is Symk.V /.
Since Symk.V / is spanned by pure tensor powers of elements in V (see [11]) and
a frame for a finite dimensional space is the same as a spanning set, it is valid to
consider frames made up of pure tensor powers of elements of V . Let

X .k/ D ¹x˝k1 ; : : : ; x˝km º

be a frame for Symk.V /. As in the k D 1 case, mapping a polynomial to its coeffi-
cient sequence defines an isomorphism betweenHk.Cn/ and Symk.V / for k > 1.
If v D w˝k 2 Symk.V / is a pure tensor power of w 2 V , then, by virtue of (1.3),
the Bessel map is

F .k/.v/ D

2664
˝
x˝k1 ; w˝k

˛
:::˝

x˝km ; w˝k
˛
3775 D

2664
hx1; wi

k

:::

hxm; wi
k

3775 D
2664
pv.x1/
:::

pv.xm/

3775 ;
where pv 2 Hk is defined by pv.z/ D hz; wik . Since Symk.V / is spanned by
pure tensor powers of elements in V , for arbitrary v 2 Symk.V /, F .k/.v/ is a
vector of m samples of a polynomial in Hk taken at points x1; : : : ; xm. The co-
efficients of the polynomial are given by v or w which is uniquely determined by
F .k/.v/. Thus, as in the k D 1 case, polynomials in Hk are uniquely determined
by the samples P .k/X .p/ D Œp.x1/; : : : ; p.xm/�

T if and only if X .k/ is a frame for
Symk.V /. Together, this can be stated as the following theorem.

Theorem 2.1. Let k � 1 and let p be a homogeneous polynomial of degree k in
n variables. It is possible to uniquely reconstruct p from its samples at m points
¹x1; : : : ; xmº if and only if the setX .k/ D ¹x˝k1 ; : : : ; x˝km º is a frame for the space
Symk.V /.

At this point it is important to mention the reconstruction that is used for this
purpose. Several examples are given in Section 3. Based on

X D ¹x1; : : : ; xmº � Cn;

let
X .k/ D ¹x˝k1 ; : : : ; x˝km º

be a frame for Symk.Cn/, F .k/ be the corresponding frame operator, and

¹
e
x˝ki D F .k/�1x˝ki º

m
iD1

be the dual frame. If p is a polynomial inHk.Cn/ whose samples at X are known
and whose coefficients are given by c 2 Symk.Cn/, then, as given in (1.1), c can
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be represented as

c D

mX
iD1

hx˝ki ; ci
e
x˝ki D

mX
iD1

p.xi /
e
x˝ki : (2.2)

In Theorem 2.3 below, it is shown that if one can reconstruct a polynomial in
Hk.C

n/ from a certain sampling set, then the same set can be used to reconstruct
polynomials in H`.Cn/ for all 1 6 ` < k. Conversely, almost every sampling set
in Cn for H1 gives rise to a sampling set for Hk where k > 1 provided there are
enough vectors in the set. The proof of Theorem 2.3 uses the following result given
in [10].

Theorem 2.2 ([10, Theorem 3.4]). Let ¹x1; : : : ; xmº be a set of vectors in Cn

that are in general position. Then the rank of the k-fold Hadamard product of the
Grammian, Œhxi ; xj ik�, is

rank.Œhxi ; xj ik�/ D

 
nC k � 1

k

!

provided m �
�
nCk�1
k

�
In the above, by being in general position, it is meant that no non-zero homo-

geneous polynomial of degree k in n variables can vanish at all of the vectors in
¹x1; : : : ; xmº.

Theorem 2.3. The following hold:

(i) If X .k/ D ¹x˝k1 ; : : : ; x˝km º is a frame for Symk.Cn/, then X .`/ is a frame
for Sym`.Cn/ for all 1 6 ` < k.

(ii) Almost every set ofm vectors in Cn such thatm >
�
nCk�1
k

�
results in a frame

for Symk.Cn/ for k > 1.

Proof. (i) First consider ` D 1. Suppose, to the contrary, that X D ¹x1; : : : ; xmº
is not a frame for Cn. Since n is finite, this is possible if and only if there is a
vector w in Cn such that w is orthogonal to each xi , i D 1; 2; : : : ; m. For such
a w one can construct w˝k 2 Symk.Cn/ and this satisfies

mX
iD1

jhx˝ki ; w˝ki2j D

mX
iD1

jhxi ; wi
2k
j D 0:

This contradicts the fact that X .k/ is a frame for Symk.Cn/. Thus X must form
a frame for Cn and the result holds for ` D 1.
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Since X is a frame for Cn, the vectors in X are in general position. Other-
wise, one would not be able to reconstruct n-variate homogeneous polynomials
of degree k from their samples at the elements in X (see (2.2)) and Theorem 2.1
would fail. Also, m �

�
nCk�1
k

�
since X .k/ is a frame and hence a spanning set for

Symk.Cn/. For 1 < ` < k,
�
nC`�1
`

�
<
�
nCk�1
k

�
. Thus m >

�
nC`�1
`

�
and one can

use Theorem 2.2 to say that

rank.Œhxi ; xj i`�/ D

 
nC ` � 1

`

!
:

This means that the maximum number of linearly independent vectors in X .`/ is�
nC`�1
`

�
which is the same as the dimension of Sym`.Cn/, thereby making X .`/ a

frame for Sym`.Cn/ when 1 < ` < k.
(ii) Almost every set of vectors X D ¹x1; : : : ; xmº in Cn is in general position

(see [10]). By Theorem 2.2, the rank of the Grammian ofX .k/ D ¹x˝k1 ; : : : ; x˝km º

is
�
nCk�1
k

�
whenm >

�
nCk�1
k

�
. This means that the maximum number of linearly

independent vectors in the setX .k/ is
�
nCk�1
k

�
which is the same as the dimension

of Symk.Cn/ and hence X .k/ is a frame for Symk.Cn/.

3 Illustrative examples

A vector in Cn can be extended to a vector in Symk.Cn/ by taking Kronecker
products. Similar entries have to be identified so as to get the right dimension. For
example, let v D Œa; b�T 2 C2. For k D 2, the Kronecker product is

Œa; b�˝2 D Œa2; ab; ba; b2�T

and this is a tensor in .C2/˝2. To get the symmetric tensor with the same num-
ber of coordinates as the dimension of Sym2.C2/, ab and ba are identified to
get Œa2; ab; b2�T 2 Sym2.C2/. This will be denoted by vˇ2. Thus starting from
v D Œa; b�T 2 C2, the vector obtained in the three-dimensional space Sym2.C2/

is
vˇ2 D Œa2; ab; b2�T:

Similarly, the corresponding vector in the four-dimensional space Sym3.C2/ is

vˇ3 D Œa3; a2b; ab2; b3�:

In general, for a vector v D Œv.1/; v.2/; : : : ; v.n/� 2 Cn, the corresponding vector
vˇk 2 Symk.Cn/ has

�
nCk�1
k

�
coordinates.

As discussed in Section 2, if the samples of a homogeneous polynomial of de-
gree k are known at points that give rise to a frame for Symk.Cn/, the polynomial
can be uniquely reconstructed from these sample values by (2.2). This section dis-
cusses several examples illustrating this.
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Sampling homogeneous polynomials 429

Example 3.1. Consider the space V D C2 over the field C. Let x1 D Œ1; 0�T,
x2 D Œ0; 1�

T and x3 D Œ1; 1�T. The set X D ¹x1; x2; x3º is a frame for V with
corresponding Bessel map

F D

2641 0

0 1

1 1

375 :
The frame operator is

F D F �F D

"
2 1

1 2

#
:

The eigenvalues of F are 1 and 3, which are the optimal lower and upper frame
bounds respectively. Further,

F �1 D
1

3

"
2 �1

�1 2

#
which is the frame operator of the dual frame. The dual frame is denoted by

QX D ¹ Qx1; Qx2; Qx3º;

where

Qx1 D F �1x1 D

�
2

3
;�
1

3

�T

;

Qx2 D F �1x2 D

�
�
1

3
;
2

3

�T

;

Qx3 D F �1x3 D

�
1

3
;
1

3

�T

:

Consider reconstruction of the homogeneous polynomial p of degree one in two
variables defined by p.u; v/ D c.1/uC c.2/v from the three frame elements. Here
k D 1, n D 2 andm D 3. Any c D Œc.1/; c.2/�T 2 C2 can be reconstructed via the
reconstruction formula (2.2)

c D

3X
iD1

hxi ; ci Qxi D

3X
iD1

p.xi / Qxi : (3.1)

If the samples of p, i.e., p.x1/, p.x2/ and p.x3/ are known, then the coefficient
vector c D Œc.1/; c.2/�T is found by calculating the right side of (3.1). This can be
verified as follows. For this example,

p.x1/ D c
.1/; p.x2/ D c

.2/ and p.x3/ D c
.1/
C c.2/:
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430 S. Datta, S. D. Howard and D. Cochran

It can then be checked that the right side of (3.1), for the given frame, is

c.1/ Qx1 C c
.2/
Qx2 C .c

.1/
C c.2// Qx3 D Œc

.1/; c.2/�T D c:

This shows that the coefficients of p.u; v/ can be reconstructed from its samples
at the frame elements.

Example 3.2. If the homogeneous polynomial to be reconstructed is of degree two
as given by

p.u; v/ D c.1/u2 C c.2/uv C c.3/v2;

then one considers the space Sym2.C2/ � .C2/˝2. The dimension of Sym2.C2/

is three, which is the same as the dimension of H2.C2/. Hence at least three
sampling points are needed. Consider the same set of sampling points as in Exam-
ple 3.1, i.e.,

x1 D Œ1; 0�
T; x2 D Œ0; 1�

T and x3 D Œ1; 1�
T:

One can extend this set to .C2/˝2 by taking Kronecker products. Restricting to
Sym2.C2/ yields

xˇ21 D Œ1; 0; 0�T; xˇ22 D Œ0; 0; 1�T and xˇ23 D Œ1; 1; 1�T:

The Bessel map is

F .2/ D

2641 0 0

0 0 1

1 1 1

375
making the frame operator

F .2/
D

2642 1 1

1 2 1

1 1 2

375 :
The minimum and maximum eigenvalues of F are 0.2679 and 3.7321, which are
the optimal lower and upper frame bounds respectively. The frame operator for the
dual frame is

F .2/�1
D

264 1 �1 0

�1 3 �1

0 �1 1

375
making the dual frame

ex˝21 D F .2/�1x˝21 D Œ1;�1; 0�T;

ex˝22 D F .2/�1x˝22 D Œ0;�1; 1�T;

ex˝23 D F .2/�1x˝23 D Œ0; 1; 0�T:

Brought to you by | University of Idaho Library
Authenticated | sdatta@uidaho.edu author's copy

Download Date | 2/15/13 9:36 PM



Sampling homogeneous polynomials 431

By the reconstruction formula (2.2) for Sym2.C2/, the coefficients of p can be
obtained from its samples at x1, x2, and x3, i.e.,

Œc.1/; c.2/; c.3/�T D p.x1/
ex˝21 C p.x2/ex˝22 C p.x3/ex˝23 : (3.2)

To verify this one has to note that the polynomial

p.u; v/ D c.1/u2 C c.2/uv C c.3/v2

satisfies

p.x1/ D c
.1/; p.x2/ D c

.3/ and p.x3/ D c
.1/
C c.2/ C c.3/:

Inserting this in the right side of (3.2) gives Œc.1/; c.2/; c.3/�T.

Example 3.3. Consider now the frame for C2 formed by x1 D Œ1; 0�T, x2 D Œ2; 0�T

and x3 D Œ0; 1�T. In this case, reconstruction of

p.u; v/ D c.1/u2 C c.2/uv C c.3/v2

from samples p.x1/, p.x2/ and p.x3/ is generally not possible, even though the
number of samples is the same as the dimension ofH2.C2/. This is because x1 and
x2 are scalar multiples of each other and the corresponding vectors in Sym2.C2/,
the set ¹Œ1; 0; 0�T; Œ4; 0; 0�T; Œ0; 0; 1�Tº does not constitute a frame for Sym2.C2/.
This is an example where the tensor powers of a frame for V do not form a frame
for Symk.V /, even though the number of vectors is adequate.

Example 3.4. Reconstruction of homogeneous polynomials inH3.C2/ requires at
least four points, since the dimension of Sym3.C2/ and hence that of H3.C2/ is
four. Taking the frame

X D ¹x1; x2; x3; x4º D ¹Œ1; 0�
T; Œ0; 1�T; Œ1; 1�T; Œ1;�1�Tº

for C2, computing Kronecker products, and restricting to Sym3.C2/ yields

¹xˇ31 ; xˇ32 ; xˇ33 ; xˇ34 º D

8̂̂̂̂
<̂
ˆ̂̂:

266664
1

0

0

0

377775 ;
266664
0

0

0

1

377775 ;
266664
1

1

1

1

377775 ;
266664
1

�1

1

�1

377775
9>>>>=>>>>; :

A homogeneous polynomial of the form

p.u; v/ D c.1/u3 C c.2/u2v C c.3/uv2 C c.4/v3
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can be reconstructed from its samples at these points as

c.1/ D p.1; 0/;

c.2/ D
1

2
.p.1; 1/C p.1;�1/ � 2p.1; 0//;

c.3/ D
1

2
.p.1; 1/C p.1;�1/ � 2p.1; 0//;

c.4/ D p.0; 1/

so that X .3/ constitutes a frame for Sym3.C/2. The Bessel map is

F .3/ D

266664
1 0 0 0

0 0 0 1

1 1 1 1

1 �1 1 �1

377775
making the frame operator

F .3/
D

266664
3 0 2 0

0 2 0 2

2 0 2 0

0 2 0 3

377775 :
The optimal lower and upper frame bounds are A D 0:4384 and B D 4:5616. The
frame operator of the dual frame is

F .3/�1
D

266664
1 0 �1 0

0 3=2 0 �1

�1 0 3=2 0

0 �1 0 1

377775 :
The dual frame is given by the vectors

ex˝31 D F .3/�1x˝31 D Œ1; 0;�1; 0�T;

ex˝32 D F .3/�1x˝32 D Œ0;�1; 0; 1�T;

ex˝33 D F .3/�1x˝33 D Œ0; 1=2; 1=2; 0�T;

ex˝34 D F .3/�1x˝34 D Œ0;�1=2; 1=2; 0�T:
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Sampling homogeneous polynomials 433

The coefficients of a degree-three homogeneous polynomial

p.u; v/ D c.1/u3 C c.2/u2v C c.3/uv2 C c.4/v3

can be obtained by

Œc.1/; c.2/; c.3/; c.4/�T D p.x1/
ex˝31 Cp.x2/ex˝32 Cp.x3/ex˝33 Cp.x4/ex˝34 (3.3)

when one knows the sample values p.xi /, i D 1; 2; 3; 4, and the sampling set X
along with the degree of the polynomial.

Example 3.5 (Mutually unbiased bases). Two orthonormal bases B and B 0 of Cn

are said to be mutually unbiased when

jhb; b0ij2 D
1

n

holds for every b 2 B and b0 2 B 0. It follows from results in [9] that the union
of a maximal set of nC 1 mutually unbiased bases (MUBs) of Cn with n.nC 1/
elements gives rise to a tight frame for Cn and Sym2.Cn/. For example, letting
! D e

2�i
3 , for C3, the following bases

1
p
3
¹.1; 1; 1/; .1; !; !2/; .1; !2; !/º;

1
p
3
¹.1; !; !/; .1; !2; 1/; .1; 1; !2/º;

1
p
3
¹.1; !2; !2/; .1; !; 1/; .1; 1; !/º

together with the standard basis for C3 gives a maximal set of mutually unbiased
bases in C3I

X D
1
p
3

8̂<̂
:
26411
1

375 ;
264 1

!

!2

375 ;
264 1

!2

!

375 ;
2641!
!

375 ;
264 1

!2

1

375 ;
264 1

1

!2

375 ;
264 1

!2

!2

375 ;
2641!
1

375 ;
26411
!

375 ;
264
p
3

0

0

375 ;
264 0
p
3

0

375 ;
264 0

0
p
3

375
9>=>; : (3.4)

These twelve vectors in (3.4) form a tight frame for C3 and can be made (by taking
Kronecker products) into a tight frame for Sym2.C3/. However, these do not form
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a tight frame for Sym3.C3/. The Bessel map for X is

F D
1
p
3

2666666666666666666666666664

1 1 1

1 ! !2

1 !2 !

1 ! !

1 !2 1

1 1 !2

1 !2 !2

1 ! 1

1 1 !

1 ! !
p
3 0 0

0
p
3 0

0 0
p
3

3777777777777777777777777775

:

The optimal lower and upper frame bounds forX are both equal to 4. The frame for
Sym2.C3/ that is generated from X has both the optimal lower and upper bounds
equal to 2. For the space Sym3.C3/ which is of dimension

�
3C3�1
3

�
D 10, one can

get a corresponding set of twelve vectors from X that are enough to form a span-
ning set but the smallest and largest non-zero eigenvalues of the frame operator
are 1 and 2 respectively, implying that the frame tightness is lost.

Example 3.6 (Kerdock sequences). Consider the space of `-dimensional binary
vectors Z`2, also called the Hamming space. Let a and b be any two vectors in Z`2.
For example, if ` D 2, then a; b 2 ¹Œ0; 0�T; Œ0; 1�T; Œ1; 0�T; Œ1; 1�Tº. The so-called
first-order Reed–Muller functions, also called the Walsh functions, are functions
�0;b W Z

`
2 ! R defined by

�0;b.a/ D
1
p

2`
.�1/b

T a: (3.5)

Fixing b and ranging over all values of a gives 2` Walsh functions. These can be
arranged as rows of a matrix (one row for each b) giving a Hadamard matrix H2`
of size 2`. For ` D 2 one gets the 4 � 4 Hadamard matrix

H4 D
1

2

266664
1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

377775 :
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Sampling homogeneous polynomials 435

The Walsh functions form an orthonormal basis for R2
`

and H2` are orthogonal
matrices.

The second order Reed–Muller functions are parameterized by a binary sym-
metric matrix P and defined as

�P;b.a/ D
.�1/wt.b/
p

2`
i .2bCPa/

T a: (3.6)

It should be noted that the matrix P is ` � `.
As with the Walsh functions where P is zero, for a fixed binary symmetric

matrix P , the set
FP D ¹�P;b W b 2 Z`2º

forms an orthonormal basis for C2` . For a fixed `, the total number of symmetric
matrices is 2`.`C1/=2. These give a set of 2`.`C1/=2 orthonormal bases for C2` .
For each P the vectors of the set FP can be used as rows (or columns) to form
a 2` � 2` unitary matrix UP , similar to the first-order case. By concatenating the
matrices UPi , i D 1; : : : ; `.`C 1/=2, one obtains the 2` � 2`.`C3/=2 matrix

ˆRM D ŒUP1 ; UP2 ; : : : ; UP2`.`C1/=2 � (3.7)

whose columns are the Reed–Muller sequences. These columns form a tight frame
for C2` with frame bounds 2`.`C1/=2. However, the tightness is not preserved
when extended to Symk.C2`/ by taking tensor powers of the columns.

It is known that the inner product between two different columns of the same
matrix UPi is zero. Fixing a vector vi which is the column of a certain matrix UPi
and letting another vector vj range over the columns of a different matrix UPj , the
inner product

jhvi ; vj ij D

´
1p
2r
; 2r times,

0; 2` � 2r times,
(3.8)

where r D rank.Pi � Pj /. When r D `, the vectors vi and vj come from matrices
Pi andPj respectively, such that the difference of these matrices has full rank. The
set of symmetric matrices P whose mutual differences have full rank is the Ker-
dock set [2,7,8]. For a given odd `, there are `matrices of size ` � ` in the Kerdock
basis making the size of the Kerdock set to be 2`. In this case, it is further implied
by (3.8) that the bases given by such matrices P result in mutually unbiased bases
for C2` . These 2` bases combined with the standard basis for C2` form a set of
mutually unbiased bases in C2` , i.e., these 2`.2` C 1/ vectors form a tight frame
for C2` and can be made into a tight frame for Sym2.C2`/. For example, if ` D 3,
the Kerdock set gives a set of 72 vectors forming a tight frame for C8. These
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further give rise to a tight frame of 72 vectors for the
�
8C2�1
2

�
D 36-dimensional

space Sym2.C8/. So this forms a good sampling set for homogeneous polyno-
mials in eight variables of degrees one and two. Thereafter, these vectors cannot
be used to sample higher order homogeneous polynomials since the dimension of
Sym3.C8/ is

�
8C3�1
3

�
D 120 and 72 vectors are not enough to span Sym3.C8/.

Remark 3.7. As the degree k or the dimension n gets larger, numerical issues
arise in calculating the inverse of the frame operator in order to get the dual frame
that is needed for the reconstruction [5]. Since the upper and lower frame bounds
determine the numerical merits of a particular frame, it is interesting to observe
how starting with a fixed frame for C2 the frame bounds change with k as the
frame is extended to a frame for Symk.C2/. A simple experiment with computing
the eigenvalues of random symmetric matrices and their k-fold Hadamard prod-
uct suggests that the ratio of the optimal upper and lower frame bounds or the
ratio of the largest and smallest non-zero eigenvalues of these matrices can in-
crease or decrease with successive products making the deduction inconclusive.
Ideally, a sampling set is desired which guarantees frame tightness not just for
X D ¹x1; : : : ; xmº but also for X .`/ D ¹x˝`1 ; : : : ; x˝`m º, 1 < ` 6 k for some k.
The example of mutually unbiased bases as shown in Example 3.5 obviously
satisfies this for k D 2, n D 3 and m D 12 since it results in a tight frame for
Sym2.C3/. A similar result is true for the sequence obtained from the Kerdock set
in Example 3.6. In general, sets which form a tight frame for Sym`.Cn/ for all
1 6 ` 6 k, often known as spherical k-designs, are hard to construct for k > 2.

4 Approximating functions by homogeneous polynomials

Let Pk.R
n/ denote the set of real n-variate algebraic polynomials of degree at

most k. The theorem of Weierstraß asserts that for any compact K � Rn, con-
tinuous f in C.K/, and m 2 N, there is a polynomial Rm 2 Pk.R

n/ such that
limm!1Rm D f uniformly inK. In [1] and [12], the authors have found similar
results where Pk.R

n/ has been replaced by Hk.Rn/, real n-variate homogeneous
polynomials of degree k. The following theorem has been established in [12].

Theorem 4.1 ([12]). If B � Rn is the boundary of a convex domain and of class
C2
C

, which means that it is twice continuously differentiable and has strictly pos-
itive curvature, then for any even f which is continuous and defined on B and
` 2 N, there is a homogeneous polynomial p2` 2 H2`.Rn/ such that

lim
`!1

p2`.x/ D f .x/

uniformly on B .
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Results for odd and general continuous functions are also given in [12] but for
convenience only even functions will be discussed here.

Having found a sampling criteria that guarantees unique reconstruction of a
homogeneous polynomial of a known degree k, it is then desirable to use the likes
of Theorem 4.1 to approximate a function, satisfying some smoothness condition,
from appropriately chosen samples. This is the subject of the following discussion.

The goal is to find an approximation of an n-variate function f from its samples
at a set of points X D ¹x1; : : : ; xmº 2 Rn i.e., from given ¹f .x1/; : : : ; f .xm/º.
The set X is taken to form a frame for Rn and picked from the boundary B of
a convex domain on which f is defined, as described in Theorem 4.1. Assuming
that f is even and satisfies other conditions of Theorem 4.1, it follows from The-
orem 4.1 that given � > 0, there exists n1 2 N and a homogeneous polynomial
p2n1 of degree 2n1 such that

kf � p2n1k1 < �:

From (2.2), assuming that m is big enough, the actual coefficients of p2n1 can be
given by

c D

mX
iD1

p2n1.xi /
A
x
˝2n1
i :

As p2n1 is not known, one cannot find ¹p2n1.xi /º
m
iD1 but suppose that ¹f .xi /ºmiD1

is given. Then it is possible to calculate

Qc D

mX
iD1

f .xi /
A
x
˝2n1
i :

Hence Qc gives a polynomial Qp2n1 that is different from p2n1 . If Qp2n1 is to be used
as an approximation of f on B , then the error can be estimated by bounding

k Qp2n1.x/ � f .x/k D k Qp2n1.x/ � p2n1 C p2n1 � f .x/k

6 k Qp2n1.x/ � p2n1k C kp2n1 � f .x/k;

where k � k is some suitably chosen norm. Due to Theorem 4.1, the second term
can be easily bounded by a small quantity; the problem is to bound the first term.

Example 4.2. Consider R2 and let f .x; y/ be a continuous even function defined
on B D ¹.x; y/ W x2 C y2 D 1º, the unit circle. Considering the L2-norm, from
Theorem 4.1, it follows that given �1, there exists some n1 2 N such that

kf � p2n1kL2.B/ < �1

for some homogeneous polynomial p2n1 of degree 2n1. The dimension of the
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space of bivariate homogeneous polynomials of degree 2n1 is 
2C 2n1 � 1

2n1

!
D 2n1 C 1:

Let X D ¹x1; : : : ; xmº be a set of points on the unit circle that forms a frame for
R2 where m � 2n1 C 1. The actual coefficients of p2n1 are given by

c D

mX
iD1

p2n1.xi /
A
x
˝2n1
i

where c D Œc.1/; : : : ; c.2n1C1/�T. Since only f .xi / are available, one is able to
calculate

Qc D

mX
iD1

f .xi /
A
x
˝2n1
i

where Qc D Œ Qc.1/; : : : ; Qc.2n1C1/�T. This gives us another polynomialep2n1 . Note that
the polynomials p2n1 andep2n1 have degree 2n1 C 1 and can be written as

p2n1 D

2n1X
jD0

c.j /x2n1�jyj ; ep2n1 D 2n1X
jD0

Qc.j /x2n1�jyj :

Suppose that one would like to useep2n1 as an approximation of f . In theL2-norm
we get

kep2n1 � f kL2.B/ 6 kep2n1 � p2n1kL2.B/ C kp2n1 � f kL2.B/ (4.1)

and the second term on the right of (4.1) is bounded by �1. The square of the first
term on the right of (4.1) is

kp2n1 �ep2n1k2L2.B/ D Z
B

jp2n1 �ep2n1 j2ds
D

Z
B

ˇ̌̌̌
ˇ
2n1X
jD0

.c.j / � Qc.j //x2n1�jyj

ˇ̌̌̌
ˇ
2

ds

D

Z 2�

0

ˇ̌̌̌
ˇ
2n1X
jD0

.c.j / � Qc.j // cos2n1�j .t/ sinj .t/

ˇ̌̌̌
ˇ
2

dt

�

Z 2�

0

 
2n1X
jD0

jc.j / � Qc.j /j

!2
dt D

 
2n1X
jD0

jc.j / � Qc.j /j

!2
2�:
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By Cauchy–Schwarz 
2n1X
jD0

jc.j / � Qc.j /j

!2
� .2n1 C 1/

2n1X
jD0

jc.j / � Qc.j /j2:

Further,
2n1X
jD0

jc.j / � Qc.j /j2 D kc � Qck2`2

D







mX
iD1

p2n1.xi /
A
x
˝2n1
i �

mX
iD1

f .xi /
A
x
˝2n1
i







2

`2

D







mX
iD1

Œp2n1.xi / � f .xi /�
A
x
˝2n1
i







2

`2

� �2







mX
iD1

A
x
˝2n1
i







2

`2

�
�2

A2n1

 
mX
iD1

kx
˝2n1
i k`2

!2

D
�2m2

A2n1

where An1 is the lower frame bound for ¹x˝2n11 ; : : : ; x
˝2n1
m º, � is a small quantity

depending on �1 due to the approximation of f by p2n1 , and one uses the fact that
kx
˝2n1
i k`2 D 1 for i D 1; : : : ; m. Taking m D 2n1 C 1,

kp2n1 �ep2n1kL2.B/ � p2� �

An1
.2n1 C 1/

3=2:

Putting this all together one gets the error estimate of the approximation as

kep2n1.x/ � f .x/kL2.B/ 6
p
2�

�

An1
.2n1 C 1/

3=2
C �1:

The frame bound An1 can increase or decrease with n1 and for a small approxi-
mation error one would want .2n1C1/

3=2

An1
to tend to zero as n1 goes to infinity.

The above example shows that for a satisfactory approximation, of a given func-
tion by homogeneous polynomials, there are some requirements that the underly-
ing frame needs to satisfy. Constructing such frames has not been discussed here
and will constitute future work.
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5 Conclusions

It has been shown that homogeneous polynomials of known degree k in n vari-
ables can be uniquely reconstructed from their samples at elements that give rise
to a frame for Symk.Cn/. Such a set can also be used to reconstruct n-variate ho-
mogeneous polynomials of all degrees ` where 1 6 ` < k. In recent work [1, 12]
conditions under which a smooth function can be approximated by homogeneous
polynomials have been established. Combining these results, a scheme to approx-
imately reconstruct smooth functions from sampled data has been proposed.

Acknowledgments. The authors would like to thank John McDonald for useful
discussions on the topic of this paper. The first named author is also indebted to
Hirotachi Abo for useful discussions on symmetric tensors.
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