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ABSTRACT
The purpose of this paper is twofold. First, we determine the lower bound for the
maximum coherence between a pair of dual frames in Cd and state conditions under
which the lower bound is attained. It is shown that the existence of frames and duals
that attain the lower bound is related to the existence of equiangular tight frames
(ETFs). Second, motivated by the scarcity of ETFs (which by default have dual
ETFs), we examine the more general question of existence of equiangular frames
that have equiangular duals. For the case where an equiangular dual cannot be
found we provide conditions under which the number of angles among vectors in the
canonical dual frame is small.
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1. Introduction

Given a set {fi}mi=1 of m unit vectors in Cd with m > d, the lower bound on the
maximum coherence between distinct vectors is given by

max
i ̸=j

|⟨fi, fj⟩|2 ≥
m− d

d(m− 1)
. (1.1)

The quantity on the right of (1.1) is known as the Welch bound [1]. Sets that attain
the lower bound in (1.1), often called Welch bound equality sets or equiangular tight
frames (ETFs), arise in various application areas such as communication systems,
quantum information processing, and coding theory [2–4]. Consequently, the problem
of constructing ETFs and determining conditions under which they exist has gained
substantial attention [3,5–7].

In the literature one finds extensions and generalizations of the Welch bound to infi-
nite dimensional spaces [3], to generalized or continuous frames [8], and to correlation
between subspaces [9]. In the work presented here, generalizations of the Welch bound
in (1.1) are considered that are two-fold in nature. In Section 2, fixing some m ∈ N,
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we consider dual pairs of frames {fi}mi=1, {gi}mi=1 for Cd and determine a lower bound
on maxi ̸=j |⟨fi, gj⟩|2. Conditions under which the lower bound is attained, and pairs of
sets that attain the lower bound are characterized. We also prove that the existence
of frames and duals that attain the lower bound is equivalent to the existence of an
ETF of m vectors in Cd. Then, in Section 3, we generalize the theory of sets that
attain the lower bound in (1.1) by analyzing equiangular frames that are not neces-
sarily tight and their duals. As indicated above, the focus in the literature has been
on equiangular tight frames, and these already have equiangular duals. Unfortunately,
for many pairs (m, d), ETFs do not exist [5], and even when they exist they are hard
to construct. Here we consider equiangular frames that are not necessarily tight and
investigate whether they can have an equiangular dual. When an equiangular dual
cannot be found, conditions are given under which an equiangular frame has a dual
such that the number of distinct angles among the dual frame vectors is small.

In the rest of this introduction we collect some definitions and known results that
will be used throughout the paper. In a finite dimensional Hilbert space like Rd or Cd,
a frame consisting of a finite number of vectors is the same as a spanning set. Given a
set Φ = {f1, . . . , fm} in Rd or Cd, let T be the matrix whose columns are the vectors
f1, . . . , fm. T is called the synthesis operator of Φ. If Φ is a frame then the d×d matrix
TT ∗ is called the frame operator of Φ. The set Φ is said to be a tight frame if the frame
operator is a constant multiple of the identity. The matrix T ∗T is the Gram matrix of
the set Φ. The (i, j)th entry of the Gram matrix is the inner product ⟨fj , fi⟩. A frame
of m vectors in a d-dimensional space will be referred to as an (m, d) frame.

Definition 1.1. [5] An equiangular tight frame (ETF) is a set {fi}mi=1 in a d-
dimensional Hilbert space satisfying

(i) TT ∗ = m
d I, i.e., the set is a tight frame.

(ii) ∥fi∥ = 1, for i = 1, . . . ,m, i.e., the set is unit normed.

(iii) |⟨fi, fj⟩| =
√

m−d
d(m−1) , 1 ≤ i ̸= j ≤ m, i.e., the set meets the Welch bound.

Relaxing the condition of being tight in Definition 1.1 gives an equiangular frame.

Definition 1.2. [10] An equiangular frame (EF) is a set {fi}mi=1 in a d-dimensional
Hilbert space H that is a frame for H and satisfies the following for some α > 0.

(i) ∥fi∥ = 1, for i = 1, . . . ,m.
(ii) |⟨fi, fj⟩| = α, 1 ≤ i ̸= j ≤ m.

Note that in Definition 1.2, α equals the Welch bound only when the set is a tight
frame. For an equiangular frame, the off-diagonal entries of the associated Gram matrix
all have modulus equal to α. Generalizing this, one gets the following.

Definition 1.3. A frame {fi}mi=1 for a d-dimensional Hilbert space H is called a
k-angle frame or a frame with k angles if the associated Gram matrix has off-
diagonal entries with k distinct moduli. The number of distinct values taken by the
set {|⟨fi, fj⟩|}1≤i<j≤m is called the number of angles of the frame.

The Gram matrix of an EF of m vectors in a d-dimensional space can be written as

G = I + αQ (1.2)

where Q is an m × m Hermitian matrix with zero diagonal and unimodular entries
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elsewhere, called the signature matrix. The Gram matrix of Φ will have a zero eigen-
value of multiplicity m − d. This implies that the minimum eigenvalue of Q is −1/α
with multiplicity m− d [6]. This property is used later in Section 3.

2. Equiangular dual frames

In this section we derive generalizations of the Welch bounds for tight frames to dual
pairs of frames. We will repeatedly need the following result, which is Theorem 3.1 in
[11].

Lemma 2.1. Given {αi}mi=1 ⊂ C, the following are equivalent:

(a) There exist dual frames {fi}mi=1 and {gi}mi=1 for Cd such that αi = ⟨fi, gi⟩ for all
1 ≤ i ≤ m;

(b) d =
∑m

i=1 αi.

Theorem 2.2. Let {fi}mi=1 be a frame for Cd with frame operator S, and let {gi}mi=1
denote a dual frame of {fi}mi=1. Then

m∑
i=1

m∑
j=1

|⟨fi, gj⟩|2 ≥ d.

Equality holds if and only if gi = S−1fi for i = 1, · · · ,m.

Proof. Considering the expansion of any f ∈ Cd in terms of the frame {fi}mi=1, it is
well-known (see [12, Lemma 5.4.2]) that the ℓ2-norm of the coefficients is minimized
precisely for the canonical frame coefficients, i.e., for i ∈ {1, · · · ,m} we have

m∑
j=1

|⟨fi, gj⟩|2 ≥
m∑
j=1

|⟨fi, S−1fj⟩|2, (2.1)

where equality holds if and only if gi = S−1fi, i = 1, · · · ,m. Note that {S−1/2fj}mj=1

is a tight frame with frame bound 1. Then we have
∑m

i=1 ||S−1/2fi||2 = d by Lemma
2.1 and so

m∑
i=1

m∑
j=1

|⟨fi, S−1fj⟩|2 =
m∑
i=1

m∑
j=1

|⟨S−1/2fi, S
−1/2fj⟩|2 =

m∑
i=1

||S−1/2fi||2 = d. (2.2)

This together with (2.1) yields the result. �

Theorem 2.3. Let {fi}mi=1 be a frame for Cd, and let {gi}mi=1 denote a dual frame of
{fi}mi=1. Assume that ⟨fi, gi⟩ is constant for i = 1, · · · ,m. Then

max
i ̸=j

|⟨fi, gj⟩|2 ≥
d(m− d)

m2(m− 1)
. (2.3)

Equality holds if and only if gi = S−1fi for i = 1, · · · ,m and |⟨fi, gj⟩| is constant for
i ̸= j.
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Proof. First we note that since ⟨fj , gj⟩ is constant for j = 1, · · · ,m and
∑m

i=1⟨fi, gi⟩ =
d by Lemma 2.1, we have

m∑
i=1

|⟨fi, gi⟩|2 =
m∑
i=1

∣∣∣∣∣∣ 1m
m∑
j=1

⟨fj , gj⟩

∣∣∣∣∣∣
2

=
d2

m
. (2.4)

Now using Theorem 2.2 and (2.4), we have

max
i ̸=j

|⟨fi, gj⟩|2 ≥ 1

m(m− 1)

∑
i ̸=j

|⟨fi, gj⟩|2

=
1

m(m− 1)

 m∑
i=1

m∑
j=1

|⟨fi, gj⟩|2 −
m∑
k=1

|⟨fk, gk⟩|2


≥ 1

m(m− 1)

(
d− d2

m

)
=

d(m− d)

m2(m− 1)
.

By Theorem 2.2 again, equality is attained in the third step if and only if gi = S−1fi
for i = 1, · · · ,m. Then equality is attained in the first step if and only if |⟨fi, gj⟩| is
constant for i ̸= j. �

Proposition 2.4. Under the assumptions in Theorem 2.3, the following are equiva-
lent:

(1) Equality holds in (2.3);
(2) The associated mixed Gramian can be written as

G =
d

m
(I + αQ) ,

where I is the identity martix, α :=
√

m−d
d(m−1) , and Q is a Hermitian matrix with

zeros along the diagonal and unimodular entries elsewhere.
(3) An (m, d) ETF exists.

Proof. (1)⇔(2) This follows from Lemma 2.1 and Theorem 2.3.

(2)⇔(3) This follows from the fact that I + αQ with α =
√

m−d
d(m−1) is the Gramian of

an (m, d) ETF. �

3. Equiangular frames and their duals

Phrased in terms of Definition 1.3, an ETF is an 1-angle frame such that the canonical
dual is also an 1-angle frame. However, it is well-known that for many pairs (m, d),
ETFs do not exist [5]. In this section we investigate conditions under which an equian-
gular frame that is not tight can have a dual that is a k-angle frame where it is desired
that k is a small positive integer. Due to (1.2), the study of EFs reduces to the study
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of the corresponding signature matrices. Signature matrices with two distinct eigen-
values correspond to ETFs. Examples of such signature matrices are somewhat rare
[5,13], as are ETFs. It is known that various large sets of equiangular lines have corre-
sponding signature matrices with three distinct eigenvalues [14]. This has motivated
extensive study of signature matrices with exactly three eigenvalues in [13,14]. In The-
orem 3.3 and Theorem 3.5 below, we analyze signature matrices with three distinct
eigenvalues and study the number of possible angles in the canonical dual of a corre-
sponding equiangular frame. It is worth noting that a result similar to Theorem 3.3
using strongly regular graphs is given in [10]. Note that since a signature matrix has
zero trace, the minimum eigenvalue must be negative. In accordance with the nota-
tion in existing literature [10], the minimum eigenvalue is written as −λ1 where λ1 is
positive. The value of α in (1.2) is 1/λ1. The following Lemma 3.1 will be used.

Lemma 3.1. If −λ1, λ2, λ3 are the three distinct eigenvalues of a signature matrix
Q, ordered such that −λ1 < λ2 < λ3, λ1 > 0, then

−λ1 ̸=
λ2 + λ3

2
.

Proof. Since Q has zero trace, it must have at least one positive eigenvalue, so λ3 > 0.
Now, if −λ1 =

λ2+λ3

2 , then λ2 + λ3 < 0; thus −λ1 < λ2 < λ2 + λ3 <
λ2+λ3

2 < 0, which
is a contradiction. �

The following lemma can be proved by a direct calculation of the characteristic poly-
nomial of Q.

Lemma 3.2. If Q is an m×m signature matrix whose off-diagonal entries are all 1
then Q has two distinct eigenvalues: m−1 with multiplicity 1, and −1 with multiplicity
m− 1.

An eigenvector is said to be regular if its entries are ±1. In what follows, 1⃗ denotes the
vector whose each entry is 1, and J is the matrix whose entries are all 1. The (i, j)th
entry of a matrix A will be denoted by A(i, j).

Theorem 3.3. Let Q be an m × m signature matrix with three distinct eigenvalues
−λ1, λ2, λ3, ordered such that −λ1 < λ2 < λ3, with λ1 > 0. Let Φ denote a correspond-
ing equiangular frame of m vectors in Rd. Then the following hold.
(a) Suppose that λ2 or λ3 is a simple eigenvalue with a regular eigenvector, and the
multiplicity of −λ1 is µ. Then the canonical dual is an equal norm 2-angle non-tight
frame and d = m− µ.
(b) Suppose that the minimum eigenvalue −λ1 is simple with a regular eigenvec-
tor. Then the canonical dual is an equal norm 2-angle non-tight frame. In this case,
d = m− 1.

Proof. The Gram matrix of a tight frame can have only one nonzero eigenvalue.
Since Q has three distinct eigenvalues, G must have two distinct nonzero eigenvalues
and so Φ is a not a tight frame. Thus the dual is also not tight in both (a) and (b).

Let P1, P2, and P3 denote the orthogonal projections onto the eigenspaces of −λ1,
λ2, and λ3, respectively. By the Spectral Theorem Q = −λ1P1 + λ2P2 + λ3P3, where
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P1 + P2 + P3 = I, and for i ̸= j, PiPj = 0. The Gram matrix of Φ is

G = I +
1

λ1
Q =

λ1 + λ2

λ1
P2 +

λ1 + λ3

λ1
P3. (3.1)

The Gram matrix of the canonical dual is the pseudo inverse of G [12], and given by

G† =
λ1

λ1 + λ2
P2 +

λ1

λ1 + λ3
P3. (3.2)

(a) Since the multiplicity of the minimum eigenvalue of Q is µ = m − d, the value
of d is obvious. Without loss of generality assume that λ3 is simple with a regular
eigenvector v. Then P3 =

1
∥v∥2 vv

T = 1
mvvT. Note that the diagonal entries of P3 are all

equal to 1
m . This implies, from (3.1), that P2 also has constant diagonal. Therefore, in

(3.2), G† must have constant diagonal too, implying that the canonical dual is equal
norm.

Equating the off-diagonal entries of G in (3.1) gives

± 1

λ1
=

λ1 + λ2

λ1
P2(i, j) +

λ1 + λ3

λ1
P3(i, j),

or,

P2(i, j) = [±1− (λ1 + λ3)P3(i, j)]
1

λ1 + λ2
. (3.3)

Using (3.2), (3.3), and the fact that the off-diagonal entries of P3 are ± 1
m

G†(i, j) = ± λ1

(λ1 + λ2)2
+

(
± 1

m

)[
λ1

λ1 + λ3
− λ1(λ1 + λ3)

(λ1 + λ2)2

]
, i ̸= j. (3.4)

From (3.4), the absolute values of the off-diagonal entries of G† can take only two
values, and this can be justified as follows. The expression inside the bracket in the
second term on the right side of (3.4) cannot be zero due to Lemma 3.1. Since Q has
three distinct eigenvalues, Q cannot have all its off-diagonal entries equal to 1 or all
equal to −1 due to Lemma 3.2. Thus the off-diagonal entries of G take both values
± 1

λ1
. If P3 and G have the exact same or the exact opposite sign distribution in their

off-diagonal entries, then, from (3.3), the off-diagonal entries of P2 will equal ±c for
some constant c and have the same sign distribution as that of P3 or G. In that case,
P2P3 ̸= 0, which contradicts the Spectral Theorem. Thus P3 and G cannot have the
exact same or the exact opposite sign distribution. All this suggests that the absolute
values of the off-diagonal entries of G† take only two values, and the canonical dual is
a 2-angle frame.
(b) Suppose that −λ1 is a simple eigenvalue. Since the multiplicity of the minimum
eigenvalue is 1, the frame is in Rm−1.

If 1⃗ is an eigenvector for −λ1 then Q = −λ1
J
m + λ2P2 + λ3P3. Using the fact that

J
m + P2 + P3 = I in (3.1) gives

G =
λ1 + λ2

λ1
I − λ1 + λ2

λ1

J

m
+

λ3 − λ2

λ1
P3.
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The Gram matrix of the dual then becomes

G† =
λ1

λ1 + λ2
P2 +

λ1

λ1 + λ3
P3 =

λ1

λ1 + λ2
(I − J

m
) + λ1(

1

λ1 + λ3
− 1

λ1 + λ2
)P3.

Equating the diagonal and off-diagonal entries of G and G†, one can conclude that in
this case the dual is 2-angle and equal norm.

Next suppose that −λ1 is a simple eigenvalue with a regular eigenvector v that is
not 1⃗. This time

G =
λ1 + λ2

λ1
I − λ1 + λ2

λ1
P1 +

λ3 − λ2

λ1
P3. (3.5)

and

G† =
λ1

λ1 + λ2
I − λ1

λ1 + λ2
P1 +

λ1(λ2 − λ3)

(λ1 + λ3)(λ1 + λ2)
P3. (3.6)

Note that P1 =
1
mvvT with diagonal entries all equal to 1

m . Thus, in (3.5), the matrices
G, I, and P1 all have constant diagonal. This implies that P3 also has constant diagonal.
Using this in (3.6) shows that G† also has constant diagonal, i.e., the canonical dual
frame is equal norm.

Solving for P3 in (3.5), and using the fact that the off-diagonal entries of P1 are
± 1

m , gives

P3(i, j) =
1

λ3 − λ2

[
±1± λ1 + λ2

m

]
, for i ̸= j. (3.7)

Substituting (3.7) in (3.6), gives for i ̸= j

G†(i, j) = ∓ 1

m
λ1

2λ1 + λ2 + λ3

(λ1 + λ2)(λ1 + λ3)
∓ λ1

(λ1 + λ2)(λ1 + λ3)

= ∓ 1

m
C2 ∓ C3,

where C2 and C3 are distinct nonzero constants due to properties of eigenvalues of Q
and Lemma 3.1. This implies that the canonical dual is a 2-angle frame. �

By [λ]n it will be meant that the eigenvalue λ has multiplicity n. Suppose that a
signature matrix Q with three distinct eigenvalues has an irrational eigenvalue λ+

√
µ.

Then the other two eigenvalues of Q are λ−√
µ and some k ∈ Z [13,14]. The following

result proved in [15] will be used.

Lemma 3.4 (Corollary 5.6 [15] ). Let Q be an m × m signature matrix with three
distinct eigenvalues, at least one of which is irrational. If m is odd then the eigenvalues
of Q are

[−
√
m](m−1)/2, [0]1, [

√
m](m−1)/2.

Theorem 3.5. Let Q be an m ×m signature matrix with three distinct eigenvalues,
at least one of which is irrational. Let Φ denote a corresponding equiangular frame of
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m vectors in Rd.
(i) If m is odd, then the canonical dual is an equal norm frame with at most m − 1
angles, and d = m+1

2 .
(ii) Let Q have eigenvalues

[−k]m−2n, [a−
√
b]n, [a+

√
b]n

with minimum eigenvalue −k, k ∈ Z+, a ∈ Q, b ∈ Q+, and m−2n > 1. Let the number
of distinct moduli in the irrational part of the projection matrix of the eigenspace of
either a +

√
b or a −

√
b be p. Then the canonical dual has at most 2p angles, and

d = 2n.

Proof. (i) Due to Lemma 3.4, the eigenvalues of Q in this case are

[−
√
m](m−1)/2, [0]1, [

√
m](m−1)/2.

Since the multiplicity of the minimum eigenvalue is m−1
2 , the value of d is given by

d = m− m− 1

2
=

m+ 1

2
.

Denote the projection matrices of −
√
m and

√
m by P1 and P1̂, respectively. By the

Spectral Theorem,Q = −
√
mP1+

√
mP1̂. Note that P1 and P1̂ are irrational conjugates

of each other, and can be written as P1 = Pa + Pb, P1̂ = Pa − Pb where the (i, j)th
entries of Pa and Pb are given by

Pa(i, j) = aij ∈ Q
Pb(i, j) = 0 or

√
bij , bij ∈ Q, bij not a perfect square.

It follows that Q = −2
√
mPb. The Gram matrix of Φ and the Gram matrix of the

canonical dual are given by

G = I +
1√
m
Q = I − P1 + P1̂ = I − 2Pb, (3.8)

G† = I − P1 −
1

2
P1̂ = I − 3

2
Pa −

1

2
Pb, (3.9)

respectively. Using the relations P 2
1 = P1, P

2
1̂

= P1̂, P1̂P1 = 0, P1P1̂ = 0, one gets

Pa = 2P 2
b and thus

G† = I − 3P 2
b − 1

2
Pb. (3.10)

The off-diagonal entries of G are ± 1√
m
, and its diagonal entries are all equal to 1.

Equating the (i, j)th entries of the matrices in (3.8) then gives

Pb(i, j) =

{
0 if i = j

± 1
2
√
m

if i ̸= j.
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Let β := 1
2
√
m
. The diagonal entries of P 2

b are then all equal to (m − 1)β2. Since the

diagonal entries of Pb are all equal to zero, this means from (3.10) that G† has constant
diagonal, and that the canonical dual is equal norm.
The absolute values of the off-diagonal entries of P 2

b can take at most m−1
2 distinct

values given by

{(m− 2)β2, (m− 4)β2, . . . , β2}.

This combined with the fact that I − 1
2Pb can take the values 1 ± β

2 means that the

absolute values of the off diagonal entries of G† can take at most m−1 distinct values.
(ii) Now the multiplicity of the minimum eigenvalue is m− 2n, and so d equals 2n.

Let P2 and P2̂ denote the projection matrices of a+
√
b and a−

√
b, respectively. As

in part(i), these can be written as P2 = Pa + Pb, P2̂ = Pa − Pb, Let P1 denote the

projection matrix of −k. Since m− 2n > 1, 1⃗ is not a basis for the eigenspace of −k.
Thus P1 ̸= 1

mJ, and the number of angles in the canonical dual cannot be determined
by Theorem 3.3. By the Spectral Theorem

Q = −kP1 + (a+
√
b)(Pa + Pb) + (a−

√
b)(Pa − Pb).

Using P1 + P2 + P2̂ = I gives

G = I +
1

k
Q =

2

k

(
(k + a)Pa +

√
bPb

)
.

The Gram matrix of the canonical dual is the pseudo inverse

G† =
2k

(k + a)2 − b

[
kG

2
− 2

√
bPb

]
.

The result then follows from the fact that since Φ is equiangular, the off-diagonal
entries of G are either 1

k or − 1
k . �

Due to the algebraic properties of signature matrices [13], one cannot expect to gen-
eralize the above results to any arbitrary number of distinct eigenvalues of Q. In the
context of regular graphs, signature matrices with four eigenvalues are discussed in
[16], and for this case, Theorem 3.5 can then be extended as follows.

Theorem 3.6. Let Q be an m×m signature matrix with four distinct eigenvalues

[a−
√
b]n, [a+

√
b]n, [−k1]

m−2n−1, [k2]
1

with minimum eigenvalue −k1, where k1, k2 ∈ Z+, a ∈ Q, b ∈ Q+. Suppose that 1⃗
is an eigenvector of Q corresponding to k2. Let the number of distinct moduli in the
purely irrational part of the projection matrix of the eigenspace of either a +

√
b or

a−
√
b be p. If Φ is an equiangular frame corresponding to Q then the canonical dual

is a frame in R2n+1 having at most 2p angles.

Proof. The projection matrix of the eigenspace of k2 is
J
m . The spectral decomposition
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of Q is

Q = −k1P1 + k2
J

m
+ (a+

√
b)P2 + (a−

√
b)P2̂.

The proof then follows in an identical manner as Theorem 3.5 by noting that the
off-diagonal entries of J are all one. �
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