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Abstract

Given K > 0 and a positive integer M, the function △K,M (t) = K max(1−
|t|
M , 0) represents an isosceles triangle on the real line R having height K
and base 2M. For a given K and M, a constant amplitude sequence is
constructed on the integers Z having autocorrelation △K,M restricted to
Z. With this setup, a large class of bounded sequences z is shown to exist,
where the autocorrelation of z is a finite sum of such △K,M s. By taking
an inverse Fourier transform we are led naturally to expansions in terms of
Fejér functions. This line of thought is closely related to the construction
of constant amplitude zero autocorrelation (CAZAC) sequences which have
applications in radar and communications. Extending the setting to R, a
Fejér function decomposition formula is obtained for a class of even contin-
uous functions. This gives rise to a decomposition theorem along the lines
of what can be described as multiplicative multiresolution analysis (MRA)
and sampling theory. The underlying techniques generalize to other gener-
ating functions besides the Fejér function, even for the case of R.
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1 Introduction

1.1 Goal

We shall introduce a notion which could aptly be called multiplicative mul-
tiresolution analysis (MRA), where the translation and dilation of an MRA are
replaced by multiplication and dilation. There is a natural sampling theory as-
sociated with this notion. The motivation for this approach is the importance
of constructing constant amplitude zero autocorrelation (CAZAC) sequences in
a variety of applications, see Section 1.3 and Section 2. The setting herein is
classical Fourier analysis on R; but we realistically envision transporting and
generalizing the methods of this paper to a more general setting, see Section 1.4
for a hint of how this will be effected.

1.2 Notation

We shall use the standard notation from harmonic analysis, e.g., [3], [25]. N
is the set of natural numbers and C is the set of complex numbers. C(Td) is
the space of C-valued continuous functions on Td = Rd/Zd, and A(Td) is the
subspace of absolutely convergent Fourier series. M(Td) is the space of bounded
Radon measures on Td, i.e., M(Td) is the dual space of the Banach space C(Td)
taken with the sup norm. For a given λ > 0, the L1-dilation of f, fλ, is defined

as fλ(t) = λf(λt). Let △(t) = max(1 − |t|, 0) on R. Let ω(γ) = 1
2π

(
sin γ/2

γ/2

)2
;

ω is the Fejér function. The Fourier transform of f ∈ L1(R) is the function f̂
defined by

f̂(γ) =
∫ ∞

−∞
f(t)e−2πitγdt, γ ∈ R̂ (= R).

A(R̂) denotes the space of such absolutely convergent Fourier transforms on
R̂, with an analogous definition for A(R̂d). We write the pairing between the
function f and f̂ as f ↔ f̂ . The Fourier transform of △ is ω2π. For a set E, the
measure of E is denoted by |E|.
Definition 1.1. The autocorrelation Ax : Z → C of x : Z → C is formally
defined as

∀k ∈ Z, Ax[k] = lim
N→∞

1
2N + 1

N∑
m=−N

x[k + m]x[m].

(Lower case Roman letters, such as x, are often used in some applied communities
to denote functions Z → C.) There is an analogous definition of autocorrelation
for functions f : Rd → C, e.g., see Theorem 1.2.

If F ∈ A(Td) we write F̌ = f = {fk}, i.e., F̌ [k] = fk, where, for all k ∈
Zd, fk =

∫
Td F (γ)e2πik·γdγ. There is a similar definition for µ̌ where µ ∈

M(Td). The support of a function F is denoted by supp F.



DISCRETE AUTOCOR.-BASED MULTIPLICATIVE MRAS AND SAMPLING ON R 113

1.3 Background

As motivation, one would like to construct bounded sequences, x : Zd → C,
whose autocorrelations are the inverse Fourier transforms of given positive mea-
sures. Problems of this kind arise in the construction of phase-coded waveforms,
which in turn are particularly relevant in several critical, current applications in
the areas of radar and communications see, e.g., [1], [5], [6], [16], [19], [20], [22],
[23], [26], [27], [28].

In the setting of R, we have the following theorem due to Wiener and Wintner
[31], which was later extended to Rd in [2], [17].

Theorem 1.2. Let µ be a bounded positive Radon measure on R. There is a
constructible function f ∈ L∞

loc(R) whose autocorrelation Af exists for all t ∈ R,
and Af = µ̌ on R, i.e.,

∀t ∈ R, Af (t) = lim
T→∞

1
2T

∫ T

−T
f(t + s)f(s)ds =

∫
R

e2πitγdµ(γ).

For any positive integer N, we denote the d−dimensional square in Zd by
S(N), i.e.,

S(N) = {m = (m1,m2, · · · ,md) ∈ Zd : −N 6 mi 6 N, i = 1, · · · , d}.

On Zd the following version of the Wiener-Wintner theorem can be obtained
[11].

Theorem 1.3. Let F ∈ A(Td) be positive on Td. There is a constructible func-
tion x : Zd → C such that

∀k ∈ Zd, Ax[k] = lim
N→∞

1
(2N + 1)d

∑
m∈S(N)

x[k + m]x[m] = F̌ [k].

Although the Wiener-Wintner theorem gives the construction of the function
x it does not ensure boundedness of x. In fact, x need not be an element of ℓ∞(Z)
[18].

It has been shown in [29], [30] that if λ ∈ (0, 1) has binary expansion
0.α1α2α3 · · · , if we consider the Lebesgue measure on (0, 1), and if we define
the unimodular (in fact, ±1-valued) function y by

y[k] =
{

2α2n+1 − 1 if k = n + 1, n ∈ N ∪ {0}
2α2n − 1 if k = 1 − n, n ∈ N,

(1.1)

then, for almost all values of λ, the autocorrelation of y, Ay, is

Ay[k] =
{

0 if k ̸= 0,
1 if k = 0.

(1.2)

So Ay is the inverse Fourier transform of F ≡ 1 on T. Here Lebesgue measure
on (0, 1) is the probability measure ([11], page 77).
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Remark 1.4. A deterministic construction of a unimodular sequence on Z
whose autocorrelation at integers is (1.2) is given in [29], where the sequence
consists of ±1s. An extensive generalization of this construction is given in [4].

1.4 Outline

Given K > 0 and M ∈ N, the function △K,M (t) = K max(1 − |t|
M , 0) represents

an isosceles triangle on the real line R having height K and base 2M. In Section
2, for a given K and M, a constant amplitude sequence is constructed on the
integers Z having autocorrelation △K,M restricted to Z (Theorem 2.1). With
this background, a large class of bounded sequences z is shown to exist, where
the autocorrelation of z is a finite sum of such △K,M s (Theorem 2.2). By taking
an inverse Fourier transform we are led naturally to expansions in terms of Fejér
functions. This line of thought is closely related to the construction of con-
stant amplitude zero autocorrelation (CAZAC) sequences which, as referenced
in Section 1.3, have applications in radar and communications.

In Section 3, we transition from Z to R, first making some technical obser-
vations about algebraic bases for the space of even continuous piecewise linear
functions on R. Then, motivated by Theorem 2.2, we prove Theorem 3.5, which
states that most such functions can be expanded as linear combinations of di-
lates of Fejér functions ( sin πnγ

πnγ )2. Using the results of Section 3, in Section 4
we prove a multiplicative MRA decomposition formula (Theorem 4.2) and for-
mulate a sampling theory in this setting (Example 4.3). In particular we prove
that

F (γ) =
∞∑

m=0

∞∑
n=1

Km,n
n

2m

(
sinπ n

2m γ

π n
2m γ

)2

in L2(R̂) (1.3)

for a large class of even functions.
The dyadic formula (1.3) generalizes naturally and significantly. For each m,

we consider the discrete group Gm = { n
2m } of R, and these form an increasing

sequence of groups as m increases. The union is the group of all dyadic rationals.
The fact that we only use positive n in (1.3) is an artifact of dealing with even
functions. In the limit we obtain the decomposition formula (1.3), but, for each
M, when we sum from m = 0 to m = M, we have an approximation of the given
function, and this approximation has the zooming property which is a useful
feature of classical dyadic MRA. We can obtain the same behavior for locally
compact abelian groups G having Sidon sets {gm} with which to generate the
analogue of the Gm, where each gm corresponds to 1

2m (see [24]). Further, we
could retain the Fejér function on G, if we did not want to generalize further,
by convolving step functions on G.
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2 Sequences whose autocorrelation is the sum of tri-
angles

In this section we give some generalizations of (1.2), the autocorrelation function
of (1.1) and of those sequences referred to in Remark 1.4. The results in this
section, even though not directly used in later sections, provide a motivation for
what we do there.

Theorem 2.1. Given M ∈ N and K > 0. Let A : Z → R be defined by

A[k] =

{
K

(
1 − |k|

M

)
if 0 6 |k| 6 M ,

0 otherwise.
(2.1)

Then there exists a constructible sequence x : Z → R with constant amplitude√
K whose autocorrelation, Ax, is A.

Proof. As indicated in Remark 1.4 one can deterministically construct a uni-
modular sequence y on Z whose autocorrelation is

Ay[k] =
{

0 if k ̸= 0,
1 if k = 0,

(2.2)

and we use (2.2) at the end of the proof. Wiener’s construction [29] of y is as
follows. On the positive integers let y take values in the following order:
[1,−1] (this row has 1 · 21 elements and is repeated 20 = 1 time);
[1, 1; 1,−1;−1, 1;−1,−1] (this row has 2 · 22 elements and is repeated 21 = 2
times);
[1, 1, 1; 1, 1,−1; 1,−1, 1; 1,−1,−1;−1, 1, 1;−1, 1,−1;
−1,−1, 1;−1,−1,−1] (this row has 3 · 23 elements and is repeated 22 = 4
times); etc. Thus, y[1] = 1, y[2] = −1, y[3] = 1, y[4] = 1, . . . . In addition, let
y[0] = 1, and, for k ∈ N, let y[−k] = y[k].

We define the function x : Z → C by x[k] =
√

Ky[⌈ k
M ⌉], where ⌈.⌉ denotes

the next largest integer. Note that |x| =
√

K.
We show that the autocorrelation Ax of x is A as defined in (2.1). Since x

is a real sequence, the autocorrelation function is even, and so it is enough to
prove the result for k > 0. Let 0 6 Mp 6 k 6 M(p+1) for some p ∈ N∪{0}. For
any given integer N, let nN be the smallest integer such that N < M(nN + 1).
Then we have

Ax[k] = lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]x[m]

= lim
N→∞

1
2N + 1

MnN∑
m=−MnN

x[k + m]x[m] + lim
N→∞

1
2N + 1

∑
MnN<|m|6N

x[m + k]x[m]

= lim
N→∞

(S1,N (k) + S2,N (k)) = S1(k) + S2(k). (2.3)
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First, we calculate bounds on S2,N (k).

|S2,N (k)| =

∣∣∣∣∣∣ 1
2N + 1

∑
MnN<|m|6N

x[m + k]x[m]

∣∣∣∣∣∣
6 1

2N + 1

∑
MnN<|m|6N

|x[m + k]x[m]| =
K

2N + 1

∑
MnN<|m|6N

1 =
2K(N − MnN )

2N + 1
.

We know from the definition of nN that N − MnN < M. Therefore, S2(k) = 0.
Consequently, Ax[k] = limN→∞ S1,N (k) = S1(k). Next, we write

S1,N (k) = lim
N→∞

1
2N + 1

MnN∑
m=−MnN

x[k + m]x[m]

= lim
N→∞

1
2N + 1

nN−1∑
n=−nN

M(n+1)∑
m=Mn+1

x[k + m]x[m]

+ lim
N→∞

1
2N + 1

x[−nN + k]x[−nN ]. (2.4)

Since x has the same value
√

Ky[n+1] for all the integers m ∈ [Mn+1,M(n+1)],
one can replace the x[m] in the first term of the right side of (2.4) by

√
Ky[n+1].

Since the second term of the right side of (2.4) is 0 this implies

S1(k) = lim
N→∞

1
2N + 1

nN−1∑
n=−nN

M(n+1)∑
m=Mn+1

x[m + k]
√

Ky[n + 1]

= lim
N→∞

1
2N + 1

(
nN−1∑

n=−nN

Mn+M(p+1)−k∑
m=Mn+1

x[m + k]
√

Ky[n + 1]

+
nN−1∑

n=−nN

M(n+1)∑
Mn+M(p+1)−k+1

x[m + k]
√

Ky[n + 1]

)

= lim
N→∞

K

2N + 1

nN−1∑
n=−nN

(
Mn+M(p+1)−k∑

m=Mn+1

y[n + p + 1]y[n + 1]

+
M(n+1)∑

m=Mn+M(p+1)−k+1

y[n + p + 2]y[n + 1]

)

= lim
N→∞

K

2N + 1

nN−1∑
n=−nN

(
(M(p + 1) − k)y[n + p + 1]y[n + 1]

+ (k − Mp)y[n + p + 2]y[n + 1]
)
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= lim
N→∞

M(p + 1) − k

2N + 1
2nNK

2nN

nN−1∑
n=−nN

y[n + p + 1]y[n + 1] +

+ lim
N→∞

(k − Mp)
2N + 1

2nNK

2nN

nN−1∑
n=−nN

y[n + p + 2]y[n + 1].

Since nN → ∞ as N → ∞, we have

lim
N→∞

S1,N (k) = lim
N→∞

M(p + 1) − k

2N + 1
2nNKAy[p] + lim

N→∞

k − Mp

2N + 1
2nNKAy[p + 1]

= lim
N→∞

(
p + 1 − k

M

)
2nNM

2N + 1
KAy[p] (2.5)

+ lim
N→∞

(
k

M
− p

)
2nNM

2N + 1
KAy[p + 1].

Note that
lim

N→∞

2nNM

2N + 1
= 1. (2.6)

In fact, from the choice of nN , we have MnN 6 N < M(nN + 1) so that
2MnN + 1 6 2N + 1 < 2M(nN + 1) + 1, and hence

2MnN

2M(nN + 1) + 1
<

2MnN

2N + 1
6 2MnN

2MnN + 1
.

nN goes to infinity as N goes to infinity and so taking limits throughout as N
goes to infinity we obtain (2.6).

Substituting (2.6) in (2.5) and using the fact that S2(k) = 0, we obtain from
(2.3) that

Ax[k] = S1(k) = K

(
p + 1 − k

M

)
Ay[p] + K

(
k

M
− p

)
Ay[p + 1].

If 0 6 k 6 M then p = 0. For every other range of k, p is non-zero. Using the
values of Ay[p] as given by (2.2) and the fact that Ax is an even function one
obtains (2.1).

Theorem 2.2. (a) Let X be the set of constant amplitude functions x : Z → C
such that for some positive integer M

Ax[k] =
{

1 − |k|
M , if 0 6 |k| 6 M,

0, otherwise.

Then there is a well defined finite Borel measure p on X induced from Lebesgue
measure on (0, 1), in a manner described in the proof.
(b) For almost all x, y ∈ X, with respect to p, we have

Ax+y = Ax + Ay,
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noting that x + y does not necessarily have constant amplitude and that Ax+y is
not generally a triangle.

Proof. (a) Using the formulation of (1.1) and (1.2), as well as Theorem 2.1, we
complete the construction of p below in the process of proving part (b).
(b) We have already seen the construction of such x and y in Theorem 2.1.
Formally,

Ax+y[k] = lim
N→∞

1
2N + 1

N∑
m=−N

(x + y)[m + k](x + y)[m]

= lim
N→∞

1
2N + 1

N∑
m=−N

(x[m + k] + y[m + k])(x[m] + y[m])

= lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]x[m] + lim
N→∞

1
2N + 1

N∑
m=−N

y[m + k]y[m] +

+ lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]y[m] + lim
N→∞

1
2N + 1

N∑
m=−N

y[m + k]x[m]

= Ax(k) + Ay(k) + lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]y[m] +

+ lim
N→∞

1
2N + 1

N∑
m=−N

y[m + k]x[m]. (2.7)

Let us denote the last two terms on the right side of (2.7) by S3 and S4, respec-
tively. We want to show that S3 = 0 and S4 = 0.

S3 = lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]y[m]. (2.8)

Without loss of generality we take y to be real-valued and so (2.8) becomes

S3 = lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]y[m]. (2.9)

Suppose that

Ax[k] =

{
1 − |k|

M1
, if 0 6 |k| 6 M1,

0, otherwise,

and

Ay[k] =

{
1 − |k|

M2
, if 0 6 |k| 6 M2,

0, otherwise.
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Let PN be the largest integer so that

M2PN 6 N 6 M2(PN + 1). (2.10)

Then S3 can be written as

S3 = lim
N→∞

1
2N + 1

−M2PN−1∑
m=−N

x[m + k]y[m] + lim
N→∞

1
2N + 1

N∑
m=M2PN+1

x[m + k]y[m] +

+ lim
N→∞

1
2N + 1

M2PN∑
m=−M2PN

x[m + k]y[m]. (2.11)

Let us denote the first two terms of (2.11) by s1 and s2, respectively. Now,

|s1| 6
−M2PN−1∑

m=−N

1 = N − M2PN

and

|s2| 6
N∑

m=M2PN+1

1 = N − M2PN .

From (2.10),
N − M2PN 6 M2(PN + 1) − M2PN = M2

which means |s1| 6 M2 and |s2| 6 M2. Therefore,

lim
N→∞

|s1|
2N + 1

6 lim
N→∞

M2

2N + 1
= 0

and also
lim

N→∞

|s2|
2N + 1

6 lim
N→∞

M2

2N + 1
= 0.

Thus,

S3 = lim
N→∞

1
2N + 1

M2PN∑
m=−M2PN

x[m + k]y[m] (2.12)

= lim
N→∞

1
2N + 1

PN−1∑
n=−PN

M2(n+1)∑
m=M2n+1

x[m + k]y[m] +

+ lim
N→∞

1
2N + 1

x[−M2PN + k]y[−M2PN ]

= lim
N→∞

1
2N + 1

PN−1∑
n=−PN

M2(n+1)∑
m=M2n+1

x[m + k]y[M2(n + 1)]. (2.13)
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The last step (2.13) follows due to the fact that by construction y is constant and
equal to either +1 or −1 in the interval [M2n + 1,M2(n + 1)]. So y[M2(n + 1)]
is either +1 or −1. Between (M2n + 1) and M2(n + 1) there are M2 terms.
So there are M2 values of x. Suppose that of these M2 values there are j that
have the value +1 and (M2 − j) that have the value −1. Upon multiplication by
y(M2(n+1)) we have either j values that are −1 and (M2−j) values that are +1
or vice versa. In the sum on the right side of (2.13) there are 2PN blocks of length
M2. Let us say that the first block has j1 terms equal to +1 and (M2− j1) terms
equal to −1, the second block has j2 terms equal to +1 and (M2−j2) terms equal
to −1 and so on. Together, there are (j1 +j2 + · · ·+j2PN

) terms equal to +1 and
(M2−j1+M2−j2+· · ·+M2−j2PN

) = 2PNM2−(j1+j2+· · ·+j2PN
) terms equal

to −1. Let PNM2 = M and j1 + j2 + · · · + j2PN
= M − j where −M 6 j 6 M.

Note that this M is unrelated to the M that appears in part (a) of the statement
of this theorem. Then 2PNM2 − (j1 + j2 + · · ·+ j2PN

) = 2M − (M − j) = M + j.
Thus, out of 2M consecutive values of x[m + k]y[m] there are (M − j) values
that are +1 and (M + j) values that are −1. So the absolute value of the sum
of 2PNM2 consecutive values of x[m + k]y[m] would be M + j − (M − j) = 2|j|.
Hence, the sum of these values exceeds Mϵ in absolute value if [Mϵ] 6 2|j| 6 2M.
The number of ways of having (M−j) +1s and (M +j) −1s is

(
2M

M−j

)
=

(
2M

M+j

)
.

Let Ω be the set of all possibilities for the 2M consecutive values of x[m +
k]y[m]. From (1.1), each such x and y corresponds to some λ ∈ (0, 1). For a
subset E of Ω we define a measure on Ω as p(E) = |E|

|Ω| . The total number of
possible values of the 2M consecutive values of x[m + k]y[m] is 22M and so
|Ω| = 22M . From our discussion in the previous paragraph it follows that given ϵ
the measure of the set for which the sum of 2M consecutive values exceeds Mϵ
in absolute value is

2−2M
M∑

|j|=[ Mϵ
2

]

(
2M

M − j

)
= 2−2M+1

M∑
j=[Mϵ

2
]

(
2M

M − j

)
.

It can be shown in a manner identical to that in [29] that

lim
M→∞

2−2M+1
M∑

j=[ Mϵ
2

]

(
2M

M − j

)
= 0.

Thus the set of x and y for which there should fail to be an integral value of
M = PNM2 such that from that value on (see (2.12))

∣∣∣ M∑
m=−M

x[m + k]y[m]
∣∣∣ 6 Mϵ + 1
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has measure zero. Therefore,

limN→∞

∣∣∣ 1
2N + 1

M∑
m=−M

x[m + k]y[m]
∣∣∣ 6 Mϵ + 1

2N + 1
=

PNM2ϵ

2N + 1
+

1
2N + 1

. (2.14)

From (2.10),
PNM2

2N + 1
6 N

2N + 1
→ 1

2
as N goes to infinity. So, the left side of (2.14) is less than ϵ

2 and for almost all
x and y,

lim
N→∞

1
2N + 1

N∑
m=−N

x[m + k]y[m] = 0.

In a similar way one can show that

S4 = lim
N→∞

1
2N + 1

N∑
m=−N

y[m + k]x[m] = 0

for almost every λ and hence for almost every x and y. This concludes proving
part (b).

Example 2.3. Generally, Ax+y[k] ̸= Ax[k] + Ay[k]. In fact, in the case of real-
valued sequences x, y ∈ ℓ∞(Z), when all limits as N → ∞ exist, Ax+y[k] =
Ax[k]+Ay[k]+2Axy[−k], and there is no reason to expect Axy[−k] = 0 for each
k ∈ Z. Here, Axy is the cross-correlation of x and y defined by

∀k ∈ Z, Axy[k] = lim
N→∞

1
2N + 1

N∑
m=−N

x[k + m]y[m].

As a particular example, note that the binary expansions, with a precision of
16 bit, of λx = 0.35 and λy = 0.9 are 0.01011001100110011 and 0.1110011001100110,
respectively. From these one can obtain sequences x and y of ±1s by following
the definition of y in (1.1). The partial autocorrelations of x, y, and x + y
have been calculated by computing the sum in Definition 1.1 for N = 1000, i.e.,
2N + 1 = 2001 terms. These partial autocorrelations at the integers between
−10 and 10 are plotted in Figure 1. Clearly, the sums of the autocorrelations of
x and y do not match the autocorrelation of x + y.

3 A decomposition formula in terms of Fejér func-
tions

Moving from the setting of Z to the setting of R, we shall now establish The-
orem 3.5 which states that a certain class of even functions can be written as
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Figure 1: Autocorrelations of two sequences x and y and their sum

a linear combination of Fejér functions ( sin πnγ
πnγ )2. By what has been done in

Section 2, in the setting of Z, this implies that bounded real valued sequences
can be constructed whose autocorrelations are inverse Fourier transforms of lin-
ear combinations of such functions, see Example 3.6. By taking inverse Fourier
transforms, Theorem 3.5 as well as Theorem 4.2 in the next section can be for-
mulated in the context of spline decompositions, e.g., see [13] and the comment
before Theorem 4.2.

Let {hk}k∈Z be the family of continuous triangle hat functions on R defined
by

hk(x) =


1 when x = k
linear on [k, k + 1] and [k − 1, k]
0 otherwise.

(3.1)

Lemma 3.1. (a) Let X be the complex vector space of continuous functions on
R that are piecewise linear on the intervals [k, k + 1]k∈Z. The sequence {hk}k∈Z
of hat functions is an algebraic basis for X in the sense that each f ∈ X has the
unique representation f =

∑
k f(k)hk meaning that

∀C ⊆ R, compact,∃NC such that ∀N ≥ NC , f =
∑
|k|≤N

f(k)hk on C.
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(b) The family h0∪{hk+h−k}∞k=1 forms a basis for all even continuous functions
on R that are piecewise linear on the intervals [k, k + 1]|k∈Z.

Proof. (a) The hks are linearly independent. In fact, assume H =
∑

k ckhk = 0
and evaluate H at j ∈ Z. Since only hj is non-zero at j, and is equal to 1 there,
we have H(j) = cj = 0 for all j.

Let f be continuous on R and piecewise linear on [k, k + 1]|k∈Z. By the
following argument, we see that f =

∑
k f(k)hk which proves that the hks also

form a spanning set. Let
e = f −

∑
k

f(k)hk.

Then e(j) = 0 for all j since hj(k) = δjk. Also, e restricted to [k, k + 1]k∈Z is
linear and e(k) = e(k + 1) = 0 which implies that e = 0 on [k, k + 1]k∈Z. In
particular,∑

k

f(k)hk(x) = x(f(k + 1)− f(k)) + (f(k)(k + 1)− kf(k + 1)) on [k, k + 1].

Thus f =
∑

k f(k)hk and the hks form a spanning set.
(b) Let f be an even continuous function on R that is piecewise linear on

the intervals [k, k + 1]|k∈Z. By (a),

f =
∑

k

ckhk.

Since hj(k) = δjk, we have
f(k) = ck.

Again since f is even,
f(k) = f(−k) = c−k,

and so

f = f(0)h0 +
∞∑

k=1

f(k)(hk + h−k). (3.2)

This implies that h0∪{hk+h−k}∞k=1 spans that space of even continuous functions
on R that are piecewise linear on the intervals [k, k +1]|k∈Z. That this set is also
linearly independent can shown in a manner identical to part (a). One can thus
conclude that the family h0 ∪ {hk + h−k}∞k=1 forms a basis for even continuous
functions on R that are piecewise linear on the intervals [k, k + 1]|k∈Z.

Remark 3.2. The previous discussion on algebraic basis raises the question
about Riesz basis properties of these hat functions. By Lemma 3.6.10 and The-
orem 3.6.6 in [9], {hk}k∈Z is a Riesz basis for span{hk}k∈Z ⊆ L2(R).
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Let △n = △1,n, i.e.,

△n(t) = max(1 − |t|
n

, 0).

Lemma 3.3. The triangle △n can be expressed as a linear combination of the
first n hats, i.e.,

△n(t) = c0h0 +
n−1∑
k=1

ck(hk(t) + h−k(t)) for n ≥ 2, and △1 = h0.

Proof. By definition, △1 = h0. For each n, △n is an even continuous function
that is piecewise linear on the intervals [k, k + 1]|k∈Z. From (3.2) we know that

△n = △n(0)h0 +
∞∑

k=1

△n(k)(hk + h−k).

Since the supp △n = [−n, n] and △n(n) = △n(−n) = 0,

△n = △n(0)h0 +
n−1∑
k=1

△n(k)(hk + h−k).

Also, △n(0) = 1 and △n(k) = n−k
n for k ∈ Z, 0 < |k| < n. Thus

△n = h0 +
n−1∑
k=1

n − k

n
(hk + h−k). (3.3)

Proposition 3.4. Let f be an even continuous function on R that is piecewise
linear on the intervals [k, k + 1]k∈Z. Then f has a unique representation as a
linear combination of the triangles △n with pointwise convergence on R.

Proof. Let H1 = h0 and for k ̸= 0 let Hk+1 = hk +h−k. Then by (3.3) of Lemma
3.3 we have 

△1

△2
...

△n

 =


1 0 0 · · · 0
1 1

2 0 · · · 0
...

...
...

. . .
1 · · · 2

n
1
n




H1

H2
...

Hn

 (3.4)

or, T = AH,
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where A is lower triangular with positive diagonal entries, and thus can be
inverted.

A−1 =



1 0 0 0 · · · 0
−2 2 0 0 · · · 0

1 −4 3 0 · · · 0
0 2 −6 4 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · (n − 2) −2(n − 1) n


.

Each Hk can be written uniquely as a linear combination of the first k triangles,
i.e.,

H1 = △1 ;
H2 = −2△1 + 2△2 ;
H3 = △1 − 4△2 + 3△3 ;
H4 = 2△2 − 6△3 + 4△4 ;

...
Hn = (n − 2)△n−2 − 2(n − 1)△n−1 + n△n.

As shown in Lemma 3.1, the Hks form a basis for the space of even continuous
functions on R that are piecewise linear on the intervals [k, k + 1]k∈Z. In fact,
(3.2) can be written as

f =
∞∑

k=1

f(k − 1)Hk.

In terms of the triangles this becomes

f = f(0)△1 + f(1)(−2△1 + 2△2) + f(2)(△1 − 4△2 + 3△3) +
f(3)(2△2 − 6△3 + 4△4) + · · · +
f(k − 1)((k − 2)△k−2 − 2(k − 1)△k−1 + k△k) +
f(k)((k − 1)△k−1 − 2k△k + (k + 1)△k+1) +
f(k + 1)(k△k − 2(k + 1)△k+1 + (k + 2)△k+2) + · · ·

= (f(0) − 2f(1) + f(2))△1 + (2f(1) − 4f(2) + 2f(3))△2 +
(3f(2) − 6f(3) + 3f(4))△3 + · · · +
(kf(k − 1) − 2kf(k) + kf(k + 1))△k + · · · .

This gives the result.

In the following we choose F ∈ L1(R̂) ∩ L2(R̂) ∩ A(R̂) : L1, since we are
interested in point values of F̌ ; L2, since we are making an assertion about
L2 convergence whose norm preserves Euclidean distance between finite energy
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signals and their spectral representations; A, because of the convergence hypoth-
esis in Theorem 3.5 and its relation to quadrature formulas. Of course, L1, L2,

and A are natural settings for a great deal of harmonic analysis since L̂1 = A,
L2 ∗ L2 = A, and an intrinsic characterization of A(R̂) has proven so elusive.
Further, F ∈ L1 ∩ L2 ∩ A is equivalent to saying that both F and F̌ are in the
Segal algebra L1 ∩ L2.

Theorem 3.5. Let F ∈ L1(R̂)∩L2(R̂)∩A(R̂) be an even function whose inverse
Fourier transform f = F̌ is piecewise linear on the intervals [k, k + 1]k∈Z and
continuous on R (by F ∈ L1(R̂)). Assume

∞∑
n=1

n3/2|f(n)| < ∞.

Then F can be written as a linear combination of Fejér functions, i.e.,

F (γ) =
∞∑

n=1

nKn

(
sinπnγ

πnγ

)2

, (3.5)

where the convergence is in the L2(R̂) norm.

Proof. The inverse Fourier transform f of F satisfies the hypotheses of Propo-
sition 3.4 and so

f(t) =
∞∑

n=1

Kn max(1 − |t|
n

, 0),

with pointwise convergence on R, where each

Kn = n(f(n − 1) − 2f(n) + f(n + 1)),

because of Proposition 3.4. Since F ∈ L1(R̂) we see that
∑∞

n=1 Kn = f(0).
The convergence assertion follows from Plancherel’s theorem and the follow-

ing estimate using Minkowski’s inequality.∫
R

∣∣∣∣∣
∞∑

n=N+1

Kn max(1 − |t|
n

, 0)

∣∣∣∣∣
2

dt

1/2

6
∞∑

n=N+1

(∫
R

∣∣∣∣Kn max(1 − |t|
n

, 0)
∣∣∣∣2

)1/2

=
√

2
∞∑

n=N+1

|Kn|

(∫ n

0

(
1 − t

n

)2

dt

)1/2

=

√
2
3

∞∑
n=N+1

√
n|Kn|.
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The right side is finite and goes to 0 as N goes to infinity by the formulas for
Kn in terms of f(n) and by our assumption.

Minkowski’s inequality is not refined; and weaker but uglier assumptions can
be made to ensure the L2-convergence asserted in Theorem 3.5.

Example 3.6. In the setting of Z, suppose F : T → C. Its inverse Fourier
transform is defined on Z, i.e., F̌ : Z → C. Suppose F̌ vanishes except for a
finite subset of Z. We assume that if we extend F̌ continuously to R by defining
its graph linearly between each pair (k, F̌ (k)) and (k + 1, F̌ (k + 1)), then F̌
has the same properties as Theorem 3.5. Then one can construct a sequence
x : Z → C such that x ∈ ℓ∞(Z) and the autocorrelation of x is F̌ , the inverse

Fourier transform of F (γ) =
∑N

n=1 nKn

(
sin πnγ

πnγ

)2
. This is due to the following.

On Z, under the assumptions stated,

F̌ [m] =
N∑

n=1

Kn max(1 − |m|
n

, 0) =
N∑

n=1

Kn△n[m].

Each triangle Kn△n is the autocorrelation of a sequence xn of the form discussed
in Section 2 with |xn| =

√
Kn. Due to what has been discussed in Section 2 the

sequence x whose autocorrelation is F̌ would be x = x1 + · · · + xN and |x| is
bounded by

∑N
n=1

√
Kn.

Remark 3.7. The functions hk, k ̸= 0, as defined in (3.1), are translations of
the function h0. On the other hand, the triangles △k, k ̸= 1, are dilations of the
triangle △1. In view of the transformation given by (3.4), this implies that the
translations of the hks are transformed into dilations of the △ks.

Remark 3.8. For perspective on the representation formula (3.5), the Classi-
cal Sampling Theorem asserts that any bandlimited function f with supp f̂ ⊆
[−Ω, Ω] and sampling period T with 0 < T ≤ 1

2Ω can be expressed in terms of its
values sampled at integer multiples of T . Mathematically, in the case 2TΩ = 1,

f(t) = T
∑

n

f(nT )
sin 2πΩ(t − nT )

π(t − nT )
(3.6)

with convergence in L2(R) and uniformly on R. A disadvantage with (3.6) is
that it can give rise to the Gibbs phenomenon at points of discontinuity if f is
piecewise continuous. One way to avoid the Gibbs phenomenon is to use certain
positive functions and the Fejér kernel as used in (3.5) is a good choice for this
purpose. Several sampling results in terms of the Fejér function can be found
in [8], [14], [15], and [21]. In addition to eliminating Gibbs, Theorem 3.5 can be
thought of as generalizing the Classical Sampling Theorem to a class of functions
that are not bandlimited, i.e., functions f with supp f̂ not compact. We should
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point out that in the case 2TΩ < 1 sampling functions having smooth Fourier
transforms can be used to great advantage, see [3], Chapter 3.10. A discussion
on aliasing and non-bandlimited functions in the Classical Sampling Theorem
can be found in pages 445-507 of the edited volume [10], cf. [7].

4 Relation to multiresolution analysis

One can generalize the situation of Section 3 by extending Proposition 3.4 and
Theorem 3.5 to the class of even functions F ∈ A(R̂) whose inverse Fourier trans-
forms F̌ are piecewise linear on the intervals [2−mn, 2−m(n+1)]|n∈Z, m ∈ N∪{0},
and continuous on R. This would incorporate another operation corresponding
to obtaining finer and finer scales, hence giving an analogue of multiresolution
analysis. This is what is done in the present section.

Definition 4.1. For each m ∈ N ∪ {0} one can define the continuous triangle
hat functions and triangles with respect to the intervals [ n

2m , n+1
2m ]|n∈Z by

h(m)
n (t) =


1 if t = 2−mn

linear in [2−m(n − 1), 2−mn] and [2−mn, 2−m(n + 1)]
0 otherwise

and

△(m)
n (t) = max(1 − 2m|t|

n
, 0),

respectively. The h
(m)
n s form an algebraic basis for the space of continuous

functions on R that are piecewise linear on the intervals [2−mn, 2−m(n+1)]|n∈Z.

Lemma 3.3 can be proved in the same way for the h
(m)
n s and △(m)

n s. Thus the
△(m)

n s also form a basis for the space of continuous functions on R that are
piecewise linear on the intervals [2−mn, 2−m(n + 1)]|n∈Z.

Let Vm be the space of continuous functions on R that are piecewise linear
on the intervals [2−mn, 2−m(n + 1)]n∈Z, i.e.,

Vm = {Continuous f ∈ L2(R) : f |[2−mn,2−m(n+1)] is linear}.

In particular, each Vm ⊆ Vm+1. In fact, these spaces form a multiresolution
analysis of L2(R), whose scaling function is the piecewise linear spline

φ(t) =
{

1 − |t| 0 6 |t| 6 1
0 otherwise,

after orthonormalization. We have the following result, when the convergence
assumption of Theorem 3.5 is modified to hold for each fm in (4.2).
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Theorem 4.2. Let F be an even function for which F and F̌ are in L1(R) ∩
L2(R). Then, F can be written as

F (γ) =
∞∑

m=0

∞∑
n=1

Km,n
n

2m

(
sinπ n

2m γ

π n
2m γ

)2

, (4.1)

where the convergence is in L2(R̂) norm.

Proof. (i) Given F ∈ L2(R̂), one can write its inverse Fourier transform as

f = F̌ =
∞∑

m=0

fm, (4.2)

where each fm is in Vm. This follows from the discussion on the Battle-Lemarié
wavelets in [12] for the case where the scaling function is obtained from

φ(t) =
{

1 − |t| 0 6 |t| 6 1
0 otherwise.

(ii) Each fm is piecewise linear on the intervals [2−mk, 2−m(k +1)]k∈Z. If, in ad-
dition, F is even (which makes F̌ even), then each fm is also even. As mentioned
in Definition 4.1 we can write each fm as a linear combination of the triangles
△(m)

k (t) = max(1 − 2m|t|
k , 0). Thus, we have

fm(t) =
∞∑

n=1

Km,n max
(

1 − 2m|t|
n

, 0
)

,

and so

F̌ (t) =
∞∑

m=0

∞∑
n=1

Km,n max
(

1 − 2m|t|
n

, 0
)

. (4.3)

This is a double indexed family of dilations of the triangles, where n corresponds
to translation of the scaling function φ and m corresponds to dilation. Note that
φ = h0, and, as mentioned in Remark 3.7, the translations of φ are transformed
into dilations of the triangles max

(
1 − 2m|t|

n , 0
)

giving rise to the second dilation.

The convergence in (4.3) is in the L2 sense.
(iii) Also, if F̌ ∈ L1(R) ∩ L2(R), then one can justify interchanging the infinite
sums in the following integral to obtain

F (γ) =
∫

R

( ∞∑
m=0

∞∑
n=1

Km,n max
(

1 − 2m|t|
n

, 0
))

e−2πitγdt

=
∞∑

m=0

∞∑
n=1

∫
R

Km,n max
(

1 − 2m|t|
n

, 0
)

e−2πitγdt

=
∞∑

m=0

∞∑
n=1

Km,n
n

2m

(
sinπ n

2m γ

π n
2m γ

)2

.
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Example 4.3. Theorem 4.2 can be formulated from the point of view of sam-
pling in the following way, cf. Remark 3.8. Ultimately we would like to replace
the constants Km,n by some expression in terms of the sampled values of F.
Motivated by our discussion on multiresolution analysis, we first write the fms
in (4.2) in terms of hat functions h

(m)
k . In fact, each fm can be written as

fm =
∞∑

n=−∞
fm

( n

2m

)
h(m)

n . (4.4)

If F is even then let H
(m)
1 = h

(m)
0 and for n > 0 let H

(m)
n+1 = h

(m)
n + h

(m)
−n . We

have

fm =
∞∑

n=1

fm

(n − 1
2m

)
H(m)

n ,

which means

F̌ =
∞∑

m=0

∞∑
n=1

fm

(n − 1
2m

)
H(m)

n .

As shown in (3.4) the function H
(m)
n can be written in terms of the first n

triangles, △(m)
k (t), see Example 4.1. This gives

F̌ (t) =
∞∑

m=0

∞∑
n=1

n∑
k=1

ckfm

(n − 1
2m

)
max

(
1 − 2m|t|

k
, 0

)
,

and so

F (γ) =
∞∑

m=0

∞∑
n=1

n∑
k=1

ckfm

(n − 1
2m

) k

2m

(
sin π k

2m γ

π k
2m γ

)2

.

Note that the constants ck can be obtained from (3.4) and what appears in the
proof of Proposition 3.4. Thus, the function F can be represented in terms of
the samples of the projections of F̌ on the spaces Vm.

Example 4.4. Consider the function F ∈ A(R̂) ∩ L1(R̂) ∩ L2(R̂) with inverse
Fourier transform given by the continuous trapezoid function,

F̌ =


a on [−1, 1], where a is some positive constant,

linear on [−2,−1] and [1, 2],
0 otherwise,

where supp F̌ = [−2, 2]. F̌ is even and belongs to the space A(R)∩L1(R)∩L2(R).
Here we can just work on the space V0, and so, by (4.4) for just m = 0, we have

F̌ = f0 = ah0 + a(h−1 + h1) = aH1 + aH2.
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From (3.4) this can be further written as

F̌ = a△1 + a2(△2 −△1) = −1f0(0)△1 + 2f0(1)△2.

After taking the Fourier transform we obtain

F (γ) = (−1)f0(0)
(

sinπγ

πγ

)2

+ 2f0(1)2
(

sin π2γ

π2γ

)2

= (−1)F̌ (0)
(

sinπγ

πγ

)2

+ 4F̌ (1)
(

sin π2γ

π2γ

)2

,

cf., [30].

5 Conclusion

Bounded sequences have been constructed on Z whose autocorrelations at in-
tegers are inverse Fourier transforms of linear combinations of dilates of Fejér
functions. In the setting of R this motivated a decomposition formula for ex-
pressing any even function in L1(R)∩L2(R) as a doubly indexed sum of dilates
of the Fejér function. One of the indices represents scaling while the other rep-
resents multiplication, and this gives the multiplicative MRA structure to the
decomposition.
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